




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、附录附录I11 面积矩与形心位置面积矩与形心位置附录附录I12 惯性矩、惯性积、极惯性矩惯性矩、惯性积、极惯性矩附录附录I13 惯性矩和惯性积的平行移轴定理惯性矩和惯性积的平行移轴定理附录I 截面的几何性质附录附录I14 惯性矩和惯性积的转轴定理惯性矩和惯性积的转轴定理* 截面的主惯性轴和主惯性矩截面的主惯性轴和主惯性矩附录附录 I I1-1 1-1 面积矩与形心位置面积矩与形心位置一、面积(对轴)矩:一、面积(对轴)矩:(与力矩类似) 是面积与它到轴的距离之积。PnPnWMGIMANmaxmaxmaxmax ; ; yASxddxASyddAAyyAAxxAxSSAySSdddddAxyyx
2、二、形心:二、形心:(等厚均质板的质心与形心重合。)(:正负面积法公式累加式AAyyAAxxiiiiiixiiyyAyASxAxASdAxyyx等厚均质mmyymmxxmmdd质心:ASAAytAtAytASAAxtAtAxtxAAyAAdddd等于形心坐标xy212121AAAxAxAAxxii3 .2010801101011010357 .341080110101101060y例例1 试确定下图的形心。解 : 组合图形,用正负面积法解之。1.用正面积法求解,图形分割及坐标如图(a)801201010 xyC2图(a)C1C1(0,0)C2(-35,60)2.用负面积法求解,图形分割及坐标如
3、图(b)3 .201107080120)11070(5图(b)C1(0,0)C2(5,5)212121AAAxAxAAxxiiC2负面积C1xy附录附录 I1-2 惯性矩、惯性积、极惯性矩惯性矩、惯性积、极惯性矩一、惯性矩:一、惯性矩:(与转动惯量类似)与转动惯量类似) 是面积与它到轴的距离的平方之积。 AyAxAxIAyIdd22dAxyyx二、极惯性矩:二、极惯性矩: 是面积对极点的二次矩。yxAIIAId2dAxyyx三、惯性积:三、惯性积:面积与其到两轴距离之积。AxyAxyId如果如果 x 或或 y 是对称轴,则是对称轴,则Ixy =0附录附录 I1-3 惯性矩和惯性积的平行移轴定理
4、惯性矩和惯性积的平行移轴定理一、平行移轴定理一、平行移轴定理:(与转动惯量的平行移轴定理类似)CCybyxax以形心为原点,建立与原坐标轴平行的坐标轴如图0CxCyASAbbSIAbbyyAbyAyIxCxCCACACAx222222 d)2( d)( dAbIIxCx2dAxyyxabCxCyC注意注意: C点必须为形心点必须为形心AbIIxCx2AaIIyCy2abAIIxCyCxyAbaIIC2)( 例例2 求图示圆对其切线AB的惯性矩。解 :求解此题有两种方法: 一是按定义直接积分; 二是用平行移轴定理等知识求。B 建立形心坐标如图,求图形对形心轴的惯性矩。6424dIIIPyx645
5、4644442dddAdIIxABAdxyOxyxIIIdI2324圆附录附录 I1-4 惯性矩和惯性积的转轴定理惯性矩和惯性积的转轴定理* 截面的主惯性轴和主惯性矩截面的主惯性轴和主惯性矩cossinsincos11yxyyxx一、一、 惯性矩和惯性积的转轴定理惯性矩和惯性积的转轴定理dAxyyxx1y1x1y12sin2cos221xyyxyxxIIIIII2sin2cos221xyyxyxyIIIIII2cos2sin211xyyxyxIIIIyxyxIIII11二、截面的形心主惯性轴和形心主惯性矩二、截面的形心主惯性轴和形心主惯性矩1.主惯性轴和主惯性矩:坐标旋转到= 0 时;恰好有0
6、)2cos2sin2(0000 xyyxyxIIII 与 0 对应的旋转轴x0 y0 称为主惯性轴;平面图形对主轴之惯性矩主惯性矩。yCxCxCyCIII22tg022)2(2 00 xyyxyxyxIIIIIII主惯性矩:2.形心主轴和形心主惯性矩: 主轴过形心时,称其为形心主轴。平面图形对形心主轴之惯性矩,称为形心主惯性矩yCxCyCxCIII22tg022)2(200 xCyCyCxCyCxCyCxCIIIIIII形心主惯性矩:3.求截面形心主惯性矩的方法建立坐标系计算面积和面积矩求形心位置建立形心坐标系;求:IyC , IxC , IxCyC求形心主轴方向 0 求形心主惯性矩AAyASyAAxASxiixiiy22)2(2 00 xCyCyCxCyCxCyCxCIIIIIIIyCxCxCyCIII22tg0例例3 在矩形内挖去一与上边内切的圆,求图形的形心主轴。(b=1.5d)解: 建立坐标系如图。求形心位置。 建立形心坐标系;求:IyC , IxC , I xCy dddddAAyyAAAxxiiii177.0434200222db2dxyOxCyCx1db2dxyOxCyCx1)5 . 0(212ydAIyAIIIIxxxCxCxC圆圆矩矩圆矩4224223685. 0)177. 0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外研版小学英语六年级上册跨学科教学计划
- 人教版美术与科技结合计划
- 家访对学生成长的影响研究
- 2025交通运输危急值有效性评估报告范文
- 2025年医院文化建设主题活动计划
- 2025年人脑工程项目合作计划书
- 航空实验室飞行测试培训计划
- 苏教版数学教学计划的创新与实践
- 兼职加工配送合同范例
- 加工技术服务合同样本
- 机柜间主体施工方案
- 盂兰盆供简易仪轨
- 2019年上海市嘉定区高考英语一模试卷
- GB/T 3608-2008高处作业分级
- 2022年保德县城污水处理有限公司招聘笔试试题及答案解析
- ARCGIS10基础培训课件
- 萨提亚模式家庭治疗课件
- 社会语言学 语言的性别、年龄变异课件
- 商业银行押品风险排查报告
- 肺动脉高压诊断流程及治疗策略课件
- 管理学原理(南大马工程)
评论
0/150
提交评论