




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、如果您需要使用本文档,请点击下载按钮下载!2017会计系税务2班7号 余翰霖函数极限与联系论文小结数学作为现代理性文化的核心,提供了一种思维方式。这种思维方式包括:抽象化、运用符号、建立模型、逻辑分析、推理、计算,不断地改进、推广,更深入地洞察内在的联系,在更大范围内进行概括,建立更为一般的统一理论等一整套严谨的、行之有效的科学方法。按照这种思维方式,数学使得各门学科的理论知识更加系统化、逻辑化。作为一种文化,它的特点在于:追求一种完全确定的、完全可靠的知识。在数学上是非分明,没有模棱两可。即使对于“偶然”发生的随机现象,对于“不确定”的事件,也要提出精确的概念和研究方法,确切回答某个事件发生
2、的概率是多少,在什么确切的范围以内等等。追求更深层次的、更为简单的、超出人类感官的基本规律。数学家们是把原始的来自实际的问题,经过了层层抽象,在抽象的、仍然是客观事物真实反映的更深层次上来考察、研究其内在规律。它不仅研究宇宙的规律,而且也研究它自己。特别是研究自身的局限性,并在不断否定自身中达到新的高度。1 / 9如果您需要使用本文档,请点击下载按钮下载!在数学分析中, 极限思想贯穿于始末, 求极限的方法也显得至关重要。本文主要探讨、总结求极限的一般方法并补充利用级数收敛及利用积分求极限的特殊方法, 而且把每一种方法的特点及注意事项作了详细重点说明, 并以实例加以例解, 弥补了一般教材的不足。
3、由于本文通过总结、研究对求极限的各种方法的很多细节作了具体注解, 使方法更具针对性、技巧性, 因此, 克服了遇到问题无从下手的缺点, 能够做到游刃有余。以下是我总结的公式:1. 定义法利用数列极限的定义求出数列的极限. 设X n 是一个数列, a 是实数, 如果对任意给定的0, 总存在一个正整数N ,当n N 时, 都有X n -a , 我们就称a 是数列X n 的极限. 记为lim X n =a . n 2. 利用极限四则运算法则应用数列或函数极限的四则运算法则, 其前提条件是参加运算的数列或函数首先是收敛数列或函数, 其次在做除法运算时, 要求必先使分母的极限不为0, 因此, 为了利用四则
4、运算定理计算数列或函数极限成为收敛数列或函数, 需以原分子、原分母中随n 或x 增大最快的项除分子、分母, 使恒等变形后的分子、分母为满足数列或函数极限四则运算定理条件的收敛数列或函数, 值得我们注意的是在应用数列或函数极限的四则运算前, 先把所给的商式消去分子分母的公共零因子。2 / 9如果您需要使用本文档,请点击下载按钮下载!利用夹逼性定理求极限当极限不易直接求出时, 可考虑将求极限的变量作适当的放大和缩小, 使放大与缩小所得的新变量易于求极限, 且二者的极限值相同, 则原极限存在, 且等于公共值。特别是当在连加或连乘的极限里, 可通过各项或各因子的放大与缩小来获得所需的不等式。4. 利用
5、两个重要极限求极限 sin x 11=1和lim (1+) x =lim (1+) n =lim (1+x ) x =e ,两个重要极限是lim x 0x n x 0x x n第一个重要极限过于简单且可通过等价无穷小来实现。利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。5. 利迫敛性来求极限) 设lim f (x ) =lim g (x ) =A , 且在某u o (x 0, ) 内有f (x ) h (x x x 0x x 0x x 0g (x , ) 则lim h (x
6、) =A6. 用洛必达法则求极限洛必达法则为:假设当自变量x 趋近于某一定值(或无穷大)时,函数(x ) 和g (x )(1)(x ) 和g (x ) 的极限都是0或都是无穷大;(2)(x ) 和g (x ) 都可导,满足:且g (x )3 / 9如果您需要使用本文档,请点击下载按钮下载!(3)lim 的导数不为0;f (x ) f (x ) 存在(或是无穷大),则极限lim 也一定存在,且g (x ) g (x )等于lim f (x ) f (x ) f (x ) ,即lim =lim 。利用洛必达法则求极限,由于分类明确,g (x ) g (x ) g (x )规律性强,且可连续进行运算
7、,可以简化一些较复杂的函数求极限的过程,但运用时需注意条件。1-cos x x 0x 20解: 是待定型. 01-cos x sin x 1lim lim = =x 0x 02x 2x 2例6:求lim注:运用洛比达法则应注意以下几点1、要注意条件,也即是说,在没有化为0, 时不可求导。 02、 应用洛必达法则,要分别的求分子、分母的导数,而不是求整个分式的导数。3、 要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用洛必达法则,否则会引起错误。7. 利用定积分求极限设函数f (x ) 在区间a , b 上连续,将区间a , b 分成n 个子区间(a
8、, x 0, x x , (i , x 在每个子区, b . , n (x i -1, x i )任取一点i (i =1, 2, ),0, 1(, x 1, x 24 / 9如果您需要使用本文档,请点击下载按钮下载!作和式(见右下图),当0时,(属于最大的区间长度) 该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间(a, b )的定积分。要求深刻理解与熟练掌握的重点内容有:1、定积分的概念及性质。2、定积分的换元法和分部积分法,3、变上限的定积分作为其上限的函数及其求导定理,牛顿(Newton )莱布尼兹(Leibniz )公式。要求一般理解与掌握的内容有:4、广义积分的概念与计算。
9、8. 利用无穷小量的性质和无穷小量和无穷大量之间的关系求极限首先, 利用无穷小量乘有界变量仍然是无穷小量, 这一方法在求极限时常常用到; 再者利用等价无穷量。在求函数极限过程中, 如果此函数是某个无穷小量与所有其他量相乘或相除时, 这个无穷小量可以用它的等价无穷小量来代替, 从而使计算简化。9. 利用递推公式计算或证明序列求极限借助递推公式计算或证明序列的极限,也是一种常见的方法,在这里我们需要首先验证极限的存在性。在极限存在的前提下,根据极限的唯一性,来解出我们所需要的结果,但往往验证极限的存在形式比较困难的,需要利用有关的不等式或实数的一些性质。5 / 9如果您需要使用本文档,请点击下载按
10、钮下载!10.利用等价无穷小量代换来求极限 所谓等价无穷小量即lim x f (x ) =1称f (x ) 与g (x ) 是x x 0时的等价无穷小量,g (x )记作f (x ) g (x ) . (x x 0) .定理:设函数f (x ), g (x ), h (x ) 在u 0(x 0) 内有定义,且有f (x ) g (x ) . (x x 0). 若lim f (x ) g (x ) =A 则lim h (x ) g (x ) =A x x 2. 若lim x h (x ) h (x ) =B 则lim =B x g (x ) f (x )g (x ) lim f (x ) h (
11、x ) =1A =A f (x ) x 证明:lim g (x ) h (x ) =lim x x 可类似证明,在此就不在详细证明了!由该定理就可利用等价无穷小量代换来求某些函数的极限tan x -sin x 的极限 x 0sin x 3sin x (1-cos x ). 而sin x x , (x 0) ; 解:由 tan x -sin x =cos x11.。利用函数的连续性求极限函数f(x)在x0处连续,一个是该处有极限,一个是该极限等于该点的函数值. 例如: 设f(x)=xsin 1/x + a,x0,b+1,x=0,x2-1,x0,试求: 当a,b为何值时,f(x)在x=0处的极限存
12、在? 当a,b为何值时,f(x)在x=0处连续? 注:f(x)=xsin 1/x +a, x0 解:f(0)b+1 左极限:lim(x7 / 9如果您需要使用本文档,请点击下载按钮下载!0-) f(x)lim(x0-) (xsin(1/x)a)0+aa 左极限:lim(x0+) f(x)lim(x0+) (x2-1)0-1-1 f(x)在x0处连续,则lim(x0-) f(x)lim(x0+) f(x)f(0),所以a-1b+1,所以a-1,b-2以上这些心智能力结合起来,就形成了能让我们研究数学的综合素养。而我们对数学能力源头的探寻,可以在很大程度上简化为对上述各种能力起源的探寻。探寻主干便
13、是人类的进化。上面列举的每种能力都需要耗用大脑的能量。(有的还需要付出其他代价。)因此,其对生存带来的益处必然大大超越所付出的代价。在某些情况下,诸如空间推理或因果意识所带来的益处是十分显著的。而在其他情况下,则需要我们进行更深的挖掘。由此可见,数学文化是一种非常实事求是的文化,它体现了一种真正的探索精神,一种毫不保守的创新精神。数学与国民经济中的很多领域休戚相关。互联网、计算机软件、高清晰电视、手机、手提电脑、游戏机、动画、指纹扫描仪、汉字印刷、监测器等在国民经济中占有相当大的比重,成为世界经济的重要支柱产业。其中互联网、计算机核心算法、图像处理、语音识别、云计算、人工智能、3G等IT业主要研发领域都是以数学为基础的。所以信息产业可能是雇用数学家最多的产业之一。7 / 9如果您需要使用本文档,请点击下载按钮下载!我们说,对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三基培训之基本知识课件
- 2025-2030中国工业硅金属硅行业盈利态势与产销需求预测报告
- 三分屏课件显示
- 小儿麻醉中补液
- 医院面试防控面试题库超值资源
- 三健核心知识培训内容课件
- 职业发展规划面试题库
- 大学生转专业申请书范文
- 三会一课课件教学
- 小儿维生素D培训课件
- 蜡疗课件教学课件
- 九下语文必背内容(古诗、文言文、课文)
- 危险化学品目录(2024版)
- 供货、安装及调试方案
- 2024年黑龙江公务员考试申论试题(县级卷)
- 公路工程施工安全技术资料编制指南
- 教育家精神引领下职业院校师德师风建设研究
- 2022新能源光伏电站电力监控系统安全防护管理制度
- 手术室医院感染控制规范(详细版)
- NB-T31022-2012风力发电工程达标投产验收规程
- NB-T10859-2021水电工程金属结构设备状态在线监测系统技术条件
评论
0/150
提交评论