最大值原理及其应用_第1页
最大值原理及其应用_第2页
最大值原理及其应用_第3页
最大值原理及其应用_第4页
最大值原理及其应用_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、内蒙古大学本科学年论文 第14页 最大值原理及其应用实例摘要:最优控制中的最大值原理,是在目标泛函的最大化问题中得到最优控制的必要条件是使哈密顿函数达最大值而得名的。它被广泛应用于开放式捕鱼以及日常实际问题求最优策略的解决过程中,但是虽然它解决了古典变分法所遇到的困难,给出了最优控制问题解的必要条件,却绝非充分条件,所以在应用中具有一定局限性。关键词:最大值原理;哈密顿函数;必要条件;最优控制;最优策略正文: 1最大值原理的内涵 设系统的状态方程为 控制u属于Rm中的某个有界闭集U,最优控制问题是求uU,使得 最小。假设f(x,u,t)的分量为fi(x,u,t),并假设,都是其自变量的连续函数

2、。用u*、x*分别表示最优控制和最优轨迹,则u*使J(u)取最小值的必要条件是: 1.1存在协状态向量*(t),它和x*(t),u *(t)一起满足正则方程 1.2哈密顿函数作为u的函数在u=u*(t)取最小值,即 1.3 正则方程的边界条件: 1.3.1 若x(tf)=xf 是给定的,则边界条件为 1.3.2 如果tf给定,x(tf)自由,那么边界条件为 1.3.3 如果tf也是自由的,还要加一个条件:以确定tf 。1.3.4 如果要求x(tf)落在m维流型S上,那么边界条件为如果tf是自由的,再增加条件可以看出,上述的正则方程和边界条件与u无约束的情况用变分法导出的完全相同。 注1: 如果

3、最优控制问题是求,使得目标函数J(u)最大,在最大值原理中,最优控制u*应使哈密顿函数值最大,即最大值原理就是在目标泛函的最大化问题中得到最优控制的必要条件是使哈密顿函数达最大值而得名的。同样,由于目标函数的最小化问题中得到最优控制的必要条件是使哈密顿函数达最小值,也有人称这个原理为最小值原理。 注2:哈密顿函数作为u的函数,在u=u*(t)处取最小值,因此式对区间t0 ,tf上的所有t成立,其含义是:对于由最优控制u=u*(t)引发的x*(t)和协状态*(t),哈密顿函数作为u函数,在u=u*(t)处取最小值。在u为标量的情况,必要条件的含义是:在特定的时刻t和特定的x*(t)、*(t)曲线

4、,哈密顿函数的右端可以看做u的函数,最优控制u*(t)使它取最小值当U为闭区间a,b时,允许的控制满足哈密顿函数仅作为u的函数,有如图所示的三种情况: 图1 关于哈密顿函数的示意图第一种情况:哈密顿函数的最小值在区间a,b内的点达到。如果哈密顿函数关于u是可微的,则必要条件为其他两种情况是哈密顿函数的最小值在区间a,b的边界点达到,这时则必须用更广泛的条件也就是用条件来描述。当x(tf)是自由的时,应用最大值原理求最优策略的具体步骤如下:第1步:构造系统的哈密顿函数为第2步:由导出决策变量u与状态变量x、协状态变量的关系,记为u=u(x,)。第3步:写出以下正则(正规)方程组为将u=u(x,)

5、带入正则方程,解出x=x*(t),=*(t)。第4步:将x=x*(t),=*(t)代入u=u(x,)得到最优策略如果决策问题还要求满足边界条件x(tf)=xf ,则以这个边界条件取代正则方程组中的条件。12最大值原理在开放式捕鱼中的应用 2.1.应用最大值原理建立模型所谓开放式捕鱼是指任何渔船都可以任意捕捞。当然,要使捕渔业有长期利润,这就需要考虑怎样控制每年的捕鱼量才能有利于鱼的繁殖,使得在一定时间内鱼的产量最高,也就是使捕渔业赚得的经济收入总数为最大。为了讨论这个问题,首先建立如下数学模型:设F(x)表示一个给定单种群鱼群的自然增长率,用h(t)表示收获率,x为鱼群的种群密度,t为时间,则

6、鱼群的增长函数为: (1)赚得的经济收入总数为: (2)其中,为经济效益指标(折扣率),p为所捕鱼的单位价格,c(x)为单位成本函数。所以原问题是要求一个最优收获率h*(t)来使经济收总数J最大。文献用欧拉方程求解最优收获率h*(t)。设那么由欧拉方程:则可得到方程: (3) 若方程(3)有唯一解x=x*,则x*就为所求的最优种群密度(能使经济收入达到最大且不会使鱼群灭绝的鱼群密度)。若用表示最大可行收获率,则 这种方法比较初等,应用范围很小,因为仅当控制变量h(t)无界,控制变量h(t)可以在m维空间中任取,才能在欧拉方程中取h0,而若控制变量h(t)有界时,欧拉方程则无法求解此最优控制问题

7、,因而本文引入最大值原理来求解此问题。 2.2应用最大值原理来求解该问题首先建立如下状态系统:状态方程 初始条件 目标函数 由最大值原理,设(t)是伴随向量,则可确定哈密顿函数为:则协态方程为: (4) 耦合方程为:由于控制变量h(t)在哈密顿函数H(x,h,t)中线性的出现,说明该问题可以有一个奇异最优控制。而单凭最大值原理来求解奇异问题是不行的,下面引入广义的Legendre-Clebsch条件来对最大值原理进行补充。有了这个补充,奇异控制问题就迎刃而解了。现在来看原问题:可得 (5)而将(4)式代入上式可得 (6)将(4)式代入上式可得 (7)只要C(x),就有由(6)式可知: (8)由

8、(7)式可知h(t)是一个关于C(x),F(x),F(x),F(x),的函数。只要由(8)式得出最优种群密度x*的表达式,就可以直接求出最优收获率h*的表达式。 2.3应用分析下面以H.S.Mohring近年来提出的太平洋大比目鱼群的参数:r=0.71,K=80.5106kg对Schaefer模型使用本文提出的最大值原理方法来研究一下关于捕鱼的最优收获问题。在最优控制问题中,只有某些简单的情况可以获得解析解,而绝大多数情况都只能获得数值解。在此,为了能得出x*和h*的解析式以便具体分析问题,不妨假设每单位重量所赚钱为常数0,即p-C(x)=。以下为所给的状态系统:状态方程 目标函数 解:设(t

9、)为伴随向量,则哈密顿函数为协态方程为: 必要条件为: (9)由于这是一个奇异控制问题,则要想使目标函数取最大值,还应满足Legendre-Clebsch条件(此条件仅为必要条件)。 (10)由(9)式和(10)式可知: (12)由(11)式可知: (13)由(12)式可以看出,当=0时,产生一个最优种群密度x*=40.25106kg,且产生了最大经济产量h*=14.29106kg。随着的上升,最优种群密度x*下降,当0.71,即折扣率大于内禀生长率r时,那么最优种群密度x*=0,在这种情况下,最优收获策略会使资源种群快速灭绝。所以,要使捕渔业获得长期利润,折扣率必须满足00.71。 2.4总

10、结 从过程上来看,最大值原理显得比较复杂,但它的应用范围很广,可以解决多种群鱼群,控制变量受限以及奇异最优控制问题。在开放式捕鱼中,人捕鱼会受到很多限制,而欧拉方程又无法解决这些控制受限问题,因而最大值原理就比它适用得多。23 最大值原理应用实例举例例3.1基金的最优管理问题 基金会达到一笔60万元的基金,现将这笔款存入银行,年利率为10%,该基金计划用80年,80年后要求只剩0.5万元用作处理该基金的结束事宜。根据基金会的需要,内年至多支取10万元作为某种奖金。我们的问题是制定该基金的最优管理策略,即每年支取多少元才能使基金会在80年中从银行取出的总金额最大。解:用x(t)表示第t年存入银行

11、的总钱数,u(t)第t年支取的钱数,则该问题的状态方程为初值和终值分别为控制约束条件为目标泛函即性能指标为从而,基金的最优管理问题就是求满足约束条件的u(t)使J(u)取最大值。用最大值原理求解这个最优控制问题。哈密顿函数为根据最大值原理,u*(t)应使哈密顿函数达到最大值,因此状态方程和辅助和方程为 于是如果,那么,由的表达式可治这与实际不符,从而因此将由大于1单调下降到小于1,设则最优管理策略为于是由状态方程可得 由边界条件得,因此由状态方程和初始条件得于是 由连续性,有解得故最优策略为 即最优管理策略是:在16年以前每年支付5万元,16年以后每年支付10万元,共支取720万元。 例3.2

12、生产与消费问题设x(t)表示总产值,u(t)表示用于扩大再生产的投资比例,0u(t)1。1-x(t)表示用于消费的比例,假设产值的增长与投资额成正比,不妨设比例为1,则,问题是寻求在一个计划区间0,T内的控制u(t),使得消费总额最大。此最优控制问题的状态方程为在u0,1下,求使达到最大值的。解: 哈密顿函数为由于故,可见。根据最大值原理,u*0,1使H取最大值,因此, 换接函数,换接点满足。辅助方程为由的连续性和知。在末端的一个小区间内应取在上u*=0,由,知,这个递减的线性函数只能一次达到值1,此时,从而上。当,则,即全部用于消费上,是一种短期行为。若,考虑换接的情形,在上(考虑,矛盾),由,知,这个递减函数只在时取值为1,其余均大于1,故前不能再换接,从而,于是 即上全部用于投资,上全部用于消费。4最大值原理的局限性最后需要指出的是,最大值原理虽然解决了古典变分法所遇到的困难,但是它也只给出了最优控制问题解的必要条件,而不是充分条件,所以由最大值原理所求的控制函数不一定是最优控制,因为有可能最优控制根本不存在。如果最优控制问题的解存在,但是从这方法得到的控制函数不止一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论