KS5U数学20分钟专题突破(25):必然与或然的思想方法_第1页
KS5U数学20分钟专题突破(25):必然与或然的思想方法_第2页
KS5U数学20分钟专题突破(25):必然与或然的思想方法_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、ks5u数学20分钟专题突破25必然与或然的思想方法一.选择题1.如图所示,墙上挂有一边长为的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是 ( )a b cd与的取值有关12.矩形的任意一点落在由函数所围成的一个封闭图形内的点所占的概率是 ( )abc d二.填空题1.在平面直角坐标系中,设是横坐标与纵坐标的绝对值均不大于2的点构成的区域,是到原点的距离不大于1的点构成的区域,向中随机投一点,则所投点在中的概率是 2.在区间上任取两个数,则方程没有实根的概率为 .分析:求

2、出方程有实根的条件,可发现这是一个求几何概型的概率问题,求出相关平面区域的面积,即可求概率.三.解答题设有关于的一元二次方程()若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率()若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率答案:一.选择题11.解:正方形的面积为,而四个角空白部分合起来为半径为的一个圆,面积为,所以他击中阴影部分的概率是,故选a。答案:a 2.解:由题意可知阴影部分的面积为,矩形的面积为,矩形的任意一点落在由函数的图象所围成的一个封闭图形内的点所占的概率是,故选 二.填空题1.分析:本小题考查古典概型,其概率应为几何图形的面积比。如图:区域d 表示边长为4 的正方形的内部(含边界),区域e 表示单位圆及其内部,因此答案:例4图2.解:若使方程有实根,须满足,即它表示的平面区域如图阴影部分(包括边界)所示,其面积为,又事件空间对应的平面区域是一个边长为1的正方形,其面积为1,故所求概率为.三.解答题解:设事件为“方程有实根”当,时,方程有实根的充要条件为()基本事件共12个:其中第一个数表示的取值,第二个数表示的取值事件中包含9个基本事件,事件发

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论