2.4.2抛物线的简单几何性质2_第1页
2.4.2抛物线的简单几何性质2_第2页
2.4.2抛物线的简单几何性质2_第3页
2.4.2抛物线的简单几何性质2_第4页
2.4.2抛物线的简单几何性质2_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 .,21 xkyl的方程为设直线由题意解由方程组 ,xyxky4212 244 210kyyk可可得得.,41412 xxyy得代入把 ,101 yk得由方程时当., 141点与抛物线只有一个公共直线这时l .,1216022 kkk的判别式为方程时当.,2110120120 kkkk或解得即由.,.,有一个公共点与抛物线只直线这时只有一个解而方程组从只有一个解方程时或当于是lkk211 .,2110120220 kkk解得即由.,.,有两个公共点与抛物线直线这时只有两个解从而方程组只有两个解方程时且当于是lkk0211 .,2110120320 kkkk或解得即由;,一个公共点与抛物线只有

2、直线时或或当lkkk0211 1102,;kkl 当当且且时时 直直线线 与与抛抛物物线线有有两两个个公公共共点点.,与抛物线没有公共点直线时或当lkk211 我们可得综上,.,.,与抛物线没有公共点直线这时没有解方程组从而没有实数解方程时或当于是lkk211 思考思考2:过抛物线:过抛物线 y2=2x的焦点做倾斜角为的焦点做倾斜角为450的弦的弦AB,则则AB的长度是多少的长度是多少?答答: 4变式变式1、已知抛物线、已知抛物线 截直线截直线y=x+b所得弦所得弦长为长为4,求,求b的值的值. 22yx变式变式2、已知抛物线、已知抛物线 截直线截直线y=kx-1/2所得弦所得弦长为长为4,求

3、,求k的值的值.22yx答答: b=-1/2答答: k=1 或或 -2/3xyoFDBlA532 .图图.:,平平行行于于抛抛物物线线的的对对称称轴轴直直线线证证求求于于点点线线线线的的准准物物线线顶顶点点的的直直线线交交抛抛物物抛抛和和通通过过点点两两点点交交抛抛物物线线于于的的直直线线过过抛抛物物线线焦焦点点例例DBDABAF5.,称称轴轴之之间间的的位位置置关关系系与与抛抛物物线线对对助助方方程程研研究究直直线线借借方方程程过过建建立立抛抛物物线线及及直直线线的的即即通通我我们们用用坐坐标标法法证证明明分分析析DB.,.的的纵纵坐坐标标相相等等即即可可的的纵纵坐坐标标与与点点点点只只要要

4、证证明明所所示示的的直直角角坐坐标标系系建建立立如如图图BD532 xyoFDBlA532 .图图.,.建立直角坐标系点它的顶点为原轴对称轴为以抛物线如图证明x532 122,pxy 设抛物线方程为 2220020,xypyOAypyA 的方程为线则直的坐标为点 32.px 抛物线的准线方程为 43202.,ypyD 点的纵坐标为可得、联立xyoFDBlA532 .图图.,22202200ppypxyyAFpF 的方程为直线所以的坐标是因为点 52022.,ypyBpxy 坐标为点的纵可得联立与 .,/,平行于抛物线的对称轴故轴得、由DBxDB54?你还有其他证明方法吗你还有其他证明方法吗k点

5、评:本题用了分类讨论的方法,若先用数形结合,点评:本题用了分类讨论的方法,若先用数形结合,找出符合条件的直线的条数,就不会造成漏解。找出符合条件的直线的条数,就不会造成漏解。6 6、已知抛物线、已知抛物线y=xy=x2 2, ,动弦动弦ABAB的长为的长为2 2,求,求ABAB中中点纵坐标的最小值。点纵坐标的最小值。.xoyFABMCND1111()()2244111113()()244224MAByyyADBCAFBFAB解 :2px OxyBAF1 1、焦半径公式:、焦半径公式:2 2、通径:、通径:2ApAFxpHH2|21 2234ABABpx xy yp 、,4 4、焦点弦弦长:、焦

6、点弦弦长:抛物线焦点弦的几个特殊性质:抛物线焦点弦的几个特殊性质:ABABxxp22(sinpABAB其中 为直线与对称轴的夹角)1125()AFBFp、定值262sinAOBpS、(AB其中 为直线与对称轴的夹角)),(22yxB,),(11yxA过抛物线过抛物线 的焦点作直线交抛物线于的焦点作直线交抛物线于 两点若两点若 ,则,则|AB|= _xy42 621 xx过抛物线过抛物线 的焦点作倾斜角为的焦点作倾斜角为 的弦,则此弦长的弦,则此弦长 为为_;一条焦点弦长为;一条焦点弦长为16,则弦所在的直线倾斜,则弦所在的直线倾斜 角为角为 _xy122 43过抛物线过抛物线 的对称轴上有一点

7、的对称轴上有一点M (p, 0), 作一条直线与抛物线交于作一条直线与抛物线交于A、B两点,若两点,若A点纵坐标为点纵坐标为 ,则,则B点纵坐标为点纵坐标为 _)0(22 ppxy2p 824pxxAB 21|焦焦点点弦弦长长与对称轴的夹角)与对称轴的夹角)为直线为直线其中其中焦点弦长焦点弦长ABpAB (sin2|2 323或或4p22122220222)(pyypykpypxypxky 由由m4.若若AB是抛物线是抛物线 的一条弦,的一条弦,O为坐标原点,为坐标原点,则则OA OB 的充要条件是弦的充要条件是弦AB过点(过点(2p,0)。)。pxy22变:设抛物线变:设抛物线 的焦点为的焦点为F,经过点,经过点F的直线交抛物线于的直线交抛物线于A、B两点,点两点,点C在抛物线的准线在抛物线的准线上,且上,且BC x轴,证明轴,证明AC经过原点经过原点O。 )(022ppx

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论