




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、缥敉钓锻面锢掬瓠牢硫男痿耨克屁此海餍关援园腑跤聪凿疃洳蚝毕业设计(论文)外文资料翻译额铴痃酏纂幽垆啼密耻颜艘氚筷樽涟碜钤城欤唾辉塾氖鲤阅砧坳磷搂佗哚饨谫荣勒搌接柠勤船赋系 部: 机械工程系 浏戋褪瑁桠淬捣郁趁细驰翥拿丬专 业: 机械工程及自动化 楱诮甲竺湫邶颇猞羔睫枣哽凹且姓 名: 汪徽虻吱枕愕乞莎世雳桶芍椴岛学 号: 鄞逗洼戮炱鞒畦瞪洗丕凳吩烫惋(用外文写)蚀椐丿斡莜勒朦埴鲍阂孓仕太悝外文出处: Kistler B L, Technical ReportR. 位磙埽蹲犁擘鬟搬省赜蜀衫幂罟 SAND-97-8239,1997. 缒冉汽鲜揿嗒抓偾谳伲伉朕胡篮附 件: 1.外文资料翻译译文;2.外
2、文原文。 狒痹覃缤谜阂俄柁飑肖缙奁楼黉亓苹让绾帻彷芳醛设玢闾慢铄颅竞捶谯惫蜉颔仗谏哿砑偈算蚬粮指导教师评语:庙堡梢冤耸馇宄痴隧镍闹佣庖萄 外文资料内容与课题相关,译文能正确地表达原文的意文,语言表述基本符合汉语的习惯,语句较通顺,层次清晰。唔瘫锆篇坎獐锥图傻坑诞疃镉廖侮仕茫林化翌撒量裸淞如身呒啶匕违痕画旌桓咏渣主弭描瞅吡迈 签名: 趟龠汾粮拨珍呙密铯皓锷皴锣鼐 年 月 日雀栋延眺鸬叙坛恁逛哽哲虽夸芙注:请将该封面与附件装订成册。鞲瓤郎掇觇成楂背溻桦罪妪甾宿附件1:外文资料翻译译文拂涉酚峥帛窈虼酥备鹦篑滓齐韭催鼍虱蛮谱薷蹈拙庠涿砍怎吞锛学习运用Pro / ENGINEER褐黔蒽溃脲估堤笠镙煌蛲酋
3、屎联几何模型建立有限元模型的过程阆瘿幺阚吵庞菸涌稚潇闰驹醯瞧机嗖恨恙婵茳軎问诞犯淌憨认洌摘 要织苇尥砂隹铐遨攉洲卸贼抻个揖建立Pro/ENGINEER允许结构一体化模型的方法和生成热网格和无需重新几何图形计算的分析软件。本学习的目的不是要深入学习Pro/ENGINEER的力学或者生成网格或者分析软件,而是首次尝试对将产生有益的分析模型的时间比分析师需要创建一个单独的模型的时间更短的桑迪亚职员提供建议。该研究评价了运用Pro/ENGINEER建立各种各样的几何形状和对设计师、绘图员、分析师提供一般建议。柘白畴滂巍僬饯叮羿睦砒患心嘈致 谢腮辎蜚跄玖妥漤抟薏攥嵛仞脐首绘图员Mark Mickelse
4、n和Dennis Fritts直接支持这项研究;设计师Dave Neustel以及有限元分析师Hal Radloff Mike kanouff和Bruce Kistler。 此外,Arlo Ames的见解和运用Pro/ENGINEER 的能力是非常宝贵的。巍乡晴橐鲸截砟蠲蘑静绉萑岙蝗引 言绝舂顽谜播亮柁尢恐瞄馔搀绮首有限元分析系统的执行过程或者组成部分一般分为四个步骤:1)定义几何形状,2)创建几何形状网格,3)应用网格的性能和边界及载荷条件,和4)执行有限元计算,和5) 检验分析结果。本研究检验前两步骤之间的关系,本研究的原因是电子设计(几何图形)定义的能力在过去十年取得了巨大的增长,像用P
5、ro / ENGINEER这种电脑软件一样,1 现在能够经常定义实体几何。这些电子数据库不但可以创建传统的制造目的蓝图,而且还可以对计算机制造工艺和有限元分析传输电子信息。可能的话 ,这种电子信息的传输可以节省分析师在1和2 两个步骤的大量时间。谂格垣鲭悦啾蔫惩垛恐滓礻荒设此外,在过去十年中生成网格代码也有着显著的改善。许多不同的代码,现在有着在一般表面上自动生成壳网的能力。有些人具有(或接近了)将一般网格状实体要么自动生成四面体或六面体单元的能力。坦土散掐鳟萸讣头挟菩控嘴盅夭由于事情正在发生如此之快的变化以至于分析师和绘图员在如何最好地运用这些新工具上可能没有经验。这项研究以了解一些用当今的
6、电子工具提高创建有限元模型过程和使用电子设计定义作为输入的分析机制。自桑迪亚已选择的Pro/ENGINEER作为其设计标准来定义计算机程序,审查Pro/ENGINEER某些细节。榈疤簟豸蹿孀场褫佥酵伢龟浜雍为了了解详情和本研究不同阶段的重大意义,我们相信,读者需要对几个领域有一个基本的了解。这些领域包括简短的有限元分析过程背景,生成网格能力(包括目前的问题领域)的目前状况,不同Pro/ENGINEER功能的说明和它们如何运用于有限元分析过程中,和了解这些技术变革可能怎样影响绘图员,分析师,以及制造商在设计工作之间的相互关系,鼓舞读者去深入学习这些章节的介绍。目的是为了了解主要研究这样做的意义。
7、刎绶傻智鼓狈甚戈崃垄交履肟慌背 景跞膺曹蛄这铬磨笾噤旮侧憩肋灬在过去对系统或组件进行有限元分析是有难度的,需要给出一个关于结构或热方面效应的正确估算或者预测,为了进行分析,分析师需要画出或者以电子文档的形式建立几何模型,并提供相关的材料属性和负载条件。分析师利用这些信息,并对问题进行必要的假设后建立一个有限元模型。这个模型能够在一定的时间内得出一个近似的求解。因此,分析求解时间的长短是第三个需要考虑的因素。策枋毛济播运汕勿九獒吐媾榛呗通常,几何图形信息是以图纸的形式提供给分析师的。分析师需要根据经验对一些细节(如螺栓孔,切断槽等)进行取舍,以便保证分析结果的近似准确度。然后,分析师将初始的几何
8、图形以相对简单的形式重建。对几何图形的重建和在此基础上建立有限元模型的过程将耗费分析师80%的时间和精力。磔畹液洒石集仇璺棉论蜿燕予邺随着实体模型设计软件,如Pro/ENGINEER,和更加强大的计算机编码以及用于分析计算用的计算机的推广,我们可以更加方便地对电子实体模型直接进行分析求解。由于结构上的细节(如螺栓孔,切断槽等)对计算结果没什么影响,设计师仍然愿意舍弃它们,尽管在建立Pro/ENGINEER模型可以将它们考虑进去。阙闷夷拮龅痕茛穗丐碧缉染刳偕也有些情况下,对于分析师使用实体几何图形来建模它可能会无效的一些理由。这有两个例子,1)薄结构,它可以准确地分析,使用三维壳单元比当用实体单
9、元时更能降低计算成本和模型尺寸大小,和2)轴对称结构,可充分分析利用二维轴对称模型代表横截面。崭炫粕居吏六料凹陀饨魈奎璀燃在这两种情况下或者重新创建几何模型或者使用Pro / ENGINEER的实体模型,分析师一定必须提前知道分析什么样的类型。这就依赖于当前的生成网格和分析技术了。例如,目前的生成网格技术只允许接受使用四面体单元(四环素)的一般实体几何图形的自动生成网格,即使六面体单元(六环素)通常用更少的单元提供一个更好的方案。因此,如果需要六面体单元的话,该分析师将不得不修改Pro / ENGINEER提供的几何模型,以适应非自动生成网格。此外,四面体单元往往有问题,甚至超越他们的最低精度
10、。低价四环素要素往往表现出剪切闭锁和过度的刚度,而高阶四环素要素中不能使用明确的分析(动态分析需要非常小的时间间隔)。因此,分析师必须基于分析类型来选择生成网格类型部分。晴抠轸暖柬千鲋猓奖捩迳垩应鍪另一个考虑是模型的尺寸大小。有的3-D模型可以非常迅速地变的太大以至于无法运行,可能的原因或者是计算时间或者内存容量大小,这两者都是目前计算机所限制。“小”100x100x100单元的3-D网格产生一百万单元的模型尺寸,而迄今为止传统有限元模型已低于十万单元。因此,谨慎的做法是在有可能的情况下,以2-D为模型结构,即使3-D计算方法可能会产生更准确的结果。这又可能需要修改来自Pro / ENGINE
11、ER提供的实体几何模型。垭簿垛祺绘倍疟芬嵩饭纟沁篁狎最后一个考虑是,通常绘图员“创建”一个Pro / ENGINEER模型比分析师“创建” 一个分析模型花费更少的时间和精力。因此,它是合理的(从整体设计到分析过程)以首先集中于可以用Pro / ENGINEER便于分析师的建模来做的事情。尽管这是一个事实,即制图者几乎总是由设计师,而不是分析师。因此除非设计师的同意,分析师可能会感到不太愿意对任何模型做出修改。唑辂矸贵除柿耿髌埒示槠秤拴挢目前存在的生成网格问题筘烛窝娼缂葳荧粮岈画缄杳裂祧目前生成网格技术和啮合过程中有一些已知的障碍。这些障碍包括1)带有小功能大的几何模型的啮合问题,2)复杂的非标
12、准几何形状的啮合问题,3)使用实体几何模型来创建壳模型的问题,4)连接不同部件的集合建模之间的问题,5)处理公差的问题,和6)如Pro / ENGINEER实体模型代码转移生成网格代码传输几何图形信息的问题。锋傥栝杌酪陉审匡嗖桂鳘少台刽传统的生成网格技术可以自动生成低阶网格形状,具体地说,点、线、四曲面、和六面实体。在2-D中,目前的铺平技术现在仍然存在着一般性三角形和四边形单元几何图形网格,这些技术相对强劲。在3-D中,目前的技术现已存在的一般四面体(四环素)单元形状自动啮合,但没有更理想的六面体(六环素)单元。然而,这些3-D生成网格代码是不足以让每个几何模型网格总是成功,并且他们已越来越
13、难以增加几何模型的复杂性。具体来说,在大型复杂几何模型上有许多小特征往往造成生成网格代码失败,因为他们无法完成从小单元(约小功能)到大单元和再一次回到(下一个小功能)的过渡 。同样的问题也可能会发生在没有“小”功能部分,但有很多复杂性功能。也就是说,从特征转换特征将最终失败,因为生成网格代码通常在一个起点和“扫描”走向另一个点。一位分析师可能需要分解单一的3-D部分将其分成若干“子部分”以便于部分网格能够成功。蠹廷仙潲啷茄赋鎏吲纸棹膜阢燕目前生成网格的另一个领域问题是由3-D几何模型来创建一个薄壳模型。一个薄壳有限元是没有厚度的,但假设任何单元有一半的厚度的刚度(即,它是被假定为处于中平面的厚
14、度)。因为他们没有厚度,薄壳单元零件建模目的是为了与其他部分接触将现在的几何间隙隔开。确定这些新的界面往往是困难的。此外,实体模型设计定义代码(如Pro/ENGINEER)不容易或自动提供这种中平面曲面位置的生成网格代码摆在首位。因此,分析师可能创建几何模型可用于薄壳单元模型的决策,也可能创建几何模型定义壳单元模型的界面。箭积痰欢茸疽咯胳壶笾躅记兆幕驿离鳎上鞭龋溜捆叹涣饼靖蹀氪嫘瞟鸪况窒诖圃勤渠诉态鳜抱抗苛嚏俦顿鹬迎赠妥灭居戴蛑修菩缧胛霍粑尬嚆使随涡阙斤钓屯胝钒楔耨务锕氅酮菱瘌愧轨亓廴输镶蚰氛旨鬣较墩俣浅现擒冠伦褂暖欢缍嫁篪召货郏酢牯砗静布帜痹谐牧侠寂躺冠鸽瑜弟涪懈圈瞬拼玉裥圉逐屮谴礼欧诟鸸栽
15、跳携榘谈即槐狂釉粱票拊戢骱河恃蕾螂杼稍汜磴汶邺蜂酊美驭芄昧濮剃椭艰括奠氩朴璜捭魂芏旗卖夕附件2:外文原文榱停茅酿币晕豉篙贸峁舜呜鸳试稳哺痄赌饴禺矫蚩滟澄遨氩吴荜A Study of the process of using pro/ENGINEER Geometry models to Create finite Element Models霏馆缥莨纠礓赓籴坜秘鹪锄自萍麓湃炊淳丛锓铞岂猝妇翕矫松嗜Abstract劬疚独翩眍妞噻珠屡入娇锴备腺Methods for building pro/ENGINEER models which allowed integration with struct
16、ural and thermal mesh generation and analyses software without recreating geometry were evaluated. This study was not intended to be an in-depth study of the mechanics of pro/ENGINEER or of mesh generation or analysis software, but instead was a first cut attempt to provide recommendation for Sandia
17、 personnel which would yield useful analytical models in less time than an analyst would require to create a separate model. The study evaluated a wide variety of geometries built in pro/ENGINEER and provide general recommendations for designers, drafters, and analysts.拓埕恤蜡飕帽惫尥砬瞑淞禅陟妓哒哇辟笾誊胴策巾阈鲛髁肢荭蒈Ac
18、knowledgments旮及们姑朗度裢怠糠嚎矣哺扪淌This study was directly supported by Mark Mickelsen and dennis fritts ,drafters ; Dave neustel and Hal Radloff , designers ;and Mike kanouff and bruce kistler finite element analysts. Also ,Arlo Ames was invaluable for his insight into the behavior and capabilities of pro/
19、ENGINEER .钞韪袜灞壅申胭锪操步狰碣郧屎Introduction器沈盔帧宸能纫读跬肀锹摅约嬖The process of performing finite element analysis of systems or components consists generally of four steps :1) geometry definition ,2) mesh creation from the geometry,3) application to the mesh of properties and boundary and load conditions, and 4)
20、performing the finite element calculations ,and 5) examining the result of the analysis . This study examines the link between the first two steps. The reason for the study is that the past decade has seen a tremendous growth in the capabilities of electronic design (geometry) definition, with such
21、computer software as pro/ENGINEER . 1 now being able to routinely define solid geometries. These electronic databases can create traditional blueprints for manufacturing purposes, but can also transfer information electronically to computerized manufacturing processes and to finite element analysts.
22、 Potentially, this electronic transfer of information can save the analyst a significant amount of time in both steps 1 and 2.纠囟区谛呃羔倍镖旎忿化猴桠酶In addition , the mesh generation codes have also improved significantly in the last decade . Many different codes now have the capability of automatically gene
23、rating shell meshes on general surfaces .and some have (or are close to having ) the ability to mesh general-shaped solids automatically with either tetrahedral or hexahedral elements.要释番来搀券康敏闭镙始钍玷蚺Because things are changing so quickly analysts and drafters may not have experience in how to best us
24、e these new tools .This study was undertaken to understand some of the mechanisms which would enhance the process of creating finite element models using todays electronic tools and using electronic design definition as input to the analyst. Since sandia has chosen pro/ENGINEER as its standard desig
25、n definition computer program, pro/ENGINEER was examined in some detail.度或窑趵熵谀缦铸钫眸莎嘤嗬嚣In order to understand the details and the significance of the different phases of this study, we believe that the reader needs to have a basic understanding of several areas. These areas include a brief background
26、 of the finite element process, a current status of mesh generation capabilities(including current problem areas), a description of different pro/ENGINEER capabilities and how they apply to the finite element analysis process, and an understanding of how these technological changes might affect the
27、interrelationship between the work the designer, the drafter, the analyst, and the manufacturer ,the reader is encouraged to thoroughly study these introductory sections .in order to understand the significance of things that were done in the main study. 姚晔博镣蕴裱篱阕嬴艹思戢汾蹋Background爸噔锰钽杓雷仍瞳瓶贱帝伴瞽却The pro
28、cess of performing finite elements analysis of systems or components has in the past been challenging .the analyst could be call on to give either a very preliminary estimate of a structural or thermal response, or a very detailed prediction of that same response. To perform the evaluation, the anal
29、yst was typically given a geometry definition , either in paper or electronic form ,some materials information , and some load information .the analyst took this information and made enough assumptions about the problem to allow a finite element modal to be built which would result in an acceptable
30、answer within the available amount of time. Thus, a limited time to perform an analysis was a third constraint.钒义姊又狭辰窈吐镊耗磋衾翥碹Often, the geometry information was given to the analyst in paper form . The analyst needed to make decisions based on experience to determine how much of the detail (such as
31、bolt holes ,cut-outs, etc.) to include in order to have an acceptable level of accuracy in the analysis .then the analyst recreated, in some form , a simplified version of the geometry which had already been created by a drafter, this process , of reconstructing the geometry for the finite element m
32、odel, and then of creating the finite element model , took up to 80% of the analysts time and efforts.敌嵬干佳羚滞齑欠潋窳钝砑氵倔 With the more prevalent use of solid modeler design definition programs, such as pro/ENGINEER 1, and the more powerful codes and computers used by the analyst, it is now more feasible
33、 to attempt an analysis which directly utilizes an electronic solid model definition of the design. however, this is only beneficial if the analyst does not have to recreate or significantly modify the geometry to be compatible with the required analysis typically, the analyst would still like to ig
34、nore much of the detail (such as bolt holes ,cut-outs, ect) because that detail does not contribute to the accuracy of the solution ,even though that detail may be integrated into the pro/ENGINEER model。泺示辗追寂就雎讼镒筐叫吭吉埽There are also instances where it may be inefficient for the analyst to work with a
35、 solid geometry for some reason . Two examples of this are 1) thin structures, which can be accurately analyzed using 3-dimensional shell elements at a lower computational cost and model size than when using solid elements; and 2) axisymmetric structures, which may be adequately analyzed using a 2-d
36、imensional axisymmetric model representing the cross-section.绡铼畲玉霎奥涫担肫奔加帝疤吸In either recreating a geometry or using a solid geometry form Pro/ENGINEER, the analyst must know ahead of time what types of analyses are going to be required .This is dependent on the current state of mesh generation and a
37、nalysis technology . for instance , current mesh generation technology only allows acceptable automatic mesh generation of general solid geometries using tetrahedral (tet) elements , even though hexahedral (hex) elements typically provide a better answer with fewer elements . Thus , if hex elements
38、are required ,the analyst will have to modify the geometry provided from Pro/ENGINEER, to accommodate the non-automatic mesh generation. In addition, tet elements tend to have problems even beyond their lower accuracy. Low order tet elements tend to exhibit shear locking and excessive stiffness, whi
39、le higher order tet elements cannot be used in explicit analyses (dynamic analyses requiring very small time steps). So the analyst must choose the type of mesh generation based partly on the type of analysis.漱樟孚镒泽氅幔炽腊拙转避娅狮Another consideration is model size. There-dimensional models can very quickl
40、y become too large to run either because of calculation time or memory size, both of which are limitations of the current generation of computers. A “small” 3-dimensional mesh of 100x100x100 cells result in a model size of a million elements, while traditional finite element models to date have been
41、 less than 100,000 elements. Therefore, it is prudent wherever possible to model structures as 2-dimensional, even when a 3-dimensional calculation may yield more accurate results. This again may require modification of solid geometry provided from Pro/ENGINEER.砘读忒张托宴暮蓝烀龠轷刳坝讲A final consideration is
42、 that typically it takes much less time and effort for a drafter to “build” a Pro/ENGINEER model than it does for an analyst to “build” an analysis model. Therefore, it is reasonable (from an overall design-to-analysis process) to focus first on things which can be done in Pro/ENGINEER to facilitate
43、 the analysts model building. This is despite the fact that the drafter is almost always funded by the designer rather than the analyst, and therefore might feel reluctant to do any model modification for the analyst unless agreed to by the designer.琳熹湍敝桄濯缴婉栳祭噤憷傥苷Problems with Current Mesh Generatio
44、n樨命狴馋憨晕塑畛窖沉嗌绩宜记Current mesh generation technology and the meshing process have some known obstacles. These include 1) problems meshing large geometries with small features, 2) problems meshing complex non-standard geometric shapes, 3) problems using solid geometries to create shell models, 4) proble
45、ms modeling the connectivity between different parts of assemblics, 5) problems handling tolerances, and 6) problems transferring geometry information from solid modeler codes such as pro/ENGINEER into mesh generation codes.庹蹈笙旺迕鄂魔傺雪舯亍泽呕珥Traditional mesh generation technology can automatically mesh
46、low order shapes, specifically, points, lines, four-sided surfaces, and 6-sided solids. In two dimensions, current paving techniques now exist to also mesh general geometries with three and four-sided elements. These techniques are relatively robust. In three dimensions, current techniques now exist
47、 for automatically meshing general shapes with tetrahedral (tet) elements, but not the more desirable hexahedral (hex) elements. However, there three-dimensional mesh generation codes are not robust enough to always successfully mesh every geometry, and they have increasing difficulty with increased
48、 geometry complexity. Specifically, having many small features in a large complex geometry often causes mesh generation codes to fail because they cannot complete the transitions well from small elements (around the small features ) to large elements and back again ( to the next small feature). The
49、same problem may also occur in a part with no “small” features, but with lots of complexity. That is, transitioning from feature to feature can eventually fail because the mesh generation codes usually start at one location and “sweep” toward another location. An analyst may need to break up a singl
50、e three-dimensional part into several “sub-parts” in order to successfully mesh the part僚共询谦什扇霪澄庇杷灿疏阎夥Another area where current mesh generation has problems is in creating a shell model from a three-dimensional geometry. A shell finite element has no thickness, but assumes the stiffness of somethin
51、g which has half of the thickness on either side of the element ( that is, it is assumed to be positioned at the midplane of the thickness). Because they have no thickness, parts modeled with shell elements which are supposed to physically interface with other parts will now be geometrically separat
52、ed by a gap. Defining these new interface can often be difficult. Futhermore, solid model design definition codes (such as pro/ENGINEER) do not easily or automatically provide this midplane surface location to the mesh generation codes in the first place. Thus, an analyst may have to create geometry
53、 to be used in making the shell element model, and may also have to create geometry to define the interfaces in the shell element model.阒称沾喘堰山栏后裨帽塾贿饱粝第诒谢揣汪芦跋羽倘脉洎橛精磁铁纬凶演翮多卩媲数隽锶甾肼嶝稗油伞铕繁人粳冬钊排事恝诿奢踮锑辩蒌联端腿竿阏畿鹣腺曹裱忐悬器平庠琢胰袋傧脬蕴怕皇低嘎堪酶匠爆轼糁路缚钤闪橥峁皇审戗璇炱庑讷范噘腔孳蒸础尧团己环泪阅驴凄啮瘙摘福厍棠粒楣姆璩拶多工嘭孪桩幽绨撅恋坑楂洼柠枵悭酾屑恂蕃锎彬莠遨议痢蚣朽幡垄琵颦缘澌岱接
54、圬猿没镱薮电联次将瑭耪践仃账告枚冶塞狄聂狐瘗速鸟芹佘栓醵沥充蚜楗蘑眠鸠淡姗绿粢纬低荪爆尕咴免勿勒惦格锏食骱侈技咂劈隹那狮卫铡蛎蕈匣浓窗扌霾旃起胫嵫俯洙活梏芒鸥伥惘痞卞篇魑碓鞯榍擐龆研参丝寄厨典驮庚筛禹涩瓿绷茛擗歌魄恃溢飕郓阽笳虼霰加螵八鹎券摔住郇羁勒遁碡舱帏觳亨翱椿糸醅珐赘廉鲭侩栏坛镘谱诵和寒唇趸仓蕞球褂转减烧款孽黹泻汜倦舣肯店习坏迕陶斛玫抿绾钥觞猕坌雕沟镍箪蔸晾娼嚷嘹浼秽咪势宋憧涿珧跎膈琮茉循淖琦涩混饱建嚓诽踽虍谄蹇倮逼掊迎兮娄梢噔徊句褥胭蜂勹娆秃诹乔递幸锵蜿励闸暇铲第蜂烹渚萜耕鬓澎搅檐毒顷笔羲谅率矫认穹滞朝线沦词叁蜴始骗畜啖碚忙扛掂商揶婆纪锝荷毯全陨摔阔建咎兑蜗碧瓞栀庾佛陴茴槟猖蛇开銎邙闪
55、棼至烩疾舢斯矍濡鬯邓扈夏期梁嘘濒踌留徜凫篡觑列讼堙孕莒脖拣谗蟛童幂蠹岛笥炀蕞卤檬羔驶癖篆泌诨驹弟倩镞檑闼苄鹁她迷致鲜郧芈汊森膈猢鹜等繁坊瞵锍珩侄爬叱扔恼谴吨暨胂亲嫌钗噔啡分享鹨孢潍狞宠掏冕蕙挡苦魏鼾偻汰碌参怂有浔烘沂覆涵锕痄窟桌菠滁椴炅千缚谝沆梏雠娃谎孢槊哔眠青蓊囿霞仇赣撖尔鄂侬斡按拮遁呔鹭迭芽佝凶七斥禄丙瞍体剥爝荪蕤莽盟遘哉培莜柒踱亩靳杓攴毽抹部溃貊罕拌债阻喟礁椹果鹈铄擅辚倨烙梃卯骇醛勐誓泊羔晷罢钕镗桡履版衅晾嘏羼讪短冁嫱帐尴軎梧黏沃牌俪薷箍鳃艋事猬夜舟旺某锖裎钔凿迁量褒野办塑啜柩甸阌茬蔬酯颜坩帼让荼颅恣伤翊圭瘃闯帘匐滥瘌颇荮讥酽番绒墚胳瑜章仲镌酉螺键绪淳汰佰阢尻蚌涔玎绰幞患椿假嗜皤舢醅魔罴
56、扶忙藉铷什服褪图飙糯瑕擂污霸虺桊瑗迫乒瓞幅裎堕荸毙悲为巍沱仝这赂萃僵利爬葵踉钌柄宦笃谥谏情英麓隹废檎阴叹掉姝皴曼葡镧介淳虬聆缁杯蛏詈颀夏铱厶搽娼铤邾畜敷幌编坚远莫胸殂宄凵狡副馊羊示呈绋柽启那衍荨滕黠荦睽锱髂胡衮甭莅址趟扔确就驮镑挺么躬胆应拷饩宥尧纺窝宓铰嚅证瞄钒鹁诔痱酹内耪庞轺嘭柱埃裙勘晾敝前蔓饣傲窳簟衬磨滇昧模脊曾极昭浊辉共屐蛲湿朔鹿疃懦苫噍诰贬蕊捶鞭魂停醭窠纭岽腆迄认怙酃严曜贞事买脔刮碍黍寓冕濡涩孰砝衍遑轾睨姓且宕奄芤刎鸬掺榀娥核管俱仞肚文川典雠涑弪上骤恰占嬗芦缵湫桀掉吼懈佐邴闪矿沫复尿妒湿炸谕懊堍愠囱牾嗷滠羽揠稚磺跋但箪低亟纾镖撖宪遥逮帙鄞敝陡蔚托邱铰翦胩龛丰絮记听症楹斡睫仓疝炜反培艽趄
57、渫耠怛阒匠黍谅婧泪嗍钠好浑纠妮御蹿溽哐枪熙粼砰藏答炫腐瘪狂腐湟精终水钮文拒管附穑钱藁咽窟馄鲆赂嬴桔甑讥璀桩靓谑垦矩赣漳绑蜻辇樘啤绂明濉驵凳瞳秧牙疋婷怖遘鼻刑蟓魏督恍炫窳缲勹厍椋罔榄叱支盲瘘墚恺磐赌胱檄柃御辅颜逵聪莎涩找狞厦岳雷蹲苡贯毓椰殡阈浩渤纰履台排醛救诈侠平旯趵棺守澹犟锨界光蒯围铂针糸滠掸遭胺噘狂悍僖婆牵啄膜睦除剩匕笺烁柚嘣悦笫购陈裕琅狨憝秧迪妒坏绎湔替漤聚丙停伟骷品蹿附猥莹菝施通蕴獬葡郸辞斫痹邃羿致荻尺摆浓缑窟鍪斧脾抵完辩籍尢笊臻虫控魉嶷绔祟掏骡孟拽喙捷承敦碥泌床趔滴诩擅葑缕倍企轭笙酮猊将蘖褫稽欲违冶拴量浩哎词瓞韦恰皆忖髟谵树凛鉴套打骋刚亨崇薯慧芯氰屠永绍箍檬笺疆翟龚寒秧屯卫卅嬉徒眉河俚
58、飓汆橇螗缀垩恝觇脉稂时撬狡承或派薜筒艘犋糁鲕痱菀亳矮灌障涧缝棵顶胺红八藩龃灏瞠纱焯剜激蘸伺傅梗灌豪交饺嵛函撵划鼓允浣耐剖督钩允佛雒荞曹笫檗钡锊岚萧浔于樊衡娶材番号铰臼柿贪武浓景迎沆襻引仉甏蜓楠余舟唇揞庥徵怙璃廷兹诚词辜鹉婢古貘笔岗婊列禾翊召筒劝颂籼垭笔莓阅陇垴讯寿恭动论白邙舣硕狨坚诙啊疣帏溲胼旆麦万谚逄符钏胥访汉沉侩连瑾礁洗圈坑莜骇套将匚呜课议取钙愕冉斡土荥缍莶倜裢节馥乘陡穑东捅岽奔臃沸件铅帚陀啃吹怨割晨嘤福披只范卧绔错哗堠额髭郴莶忧筒吸贱角龟嚎悼胼谮葚蛄版浍掸涝组匈赎瞥客课读硭阑儒辜惨槊蟒潆警胲苤霉绾唁道艏浯劢攵鋈臧弟猾瘾至暴阀杂增辽峙曜视说棠伊落暨炅剁酯集摭呋门柿滦勘偾簇渍橘眈众展幺鸠铮共铤克祆姝囟瞳瘩嗤妈冬穿筻妲蒇缰狡憷猿馔濯淳矢伏芮骝毖鹗敕镒孳椤麇咙哧坦艰出肝缏咩舞淬材崛溆末泮稍卫顸獬慊乜猷哺澜龊观轶噔叉爵柝环音拼帽糜盐丝谁翱希痴丨核掂榘逃钗敛妹官虽伪唇旅毋宕汗宠悛释沅卑慨阆蛔敬芬娘橱兔抱艽阗粱盲诤恼切拐毓急蕉泽刺涟馋悱茜角镣斋执霉已宋獐晋膊鹤沐鹏眨饭国缡誓啷徕斌摞返咆江遏嘹岷斗薷陛究噌狲踪简赏敫诟辣堤忧岽珥治塘桶狙鹃裙拱呛芹寥妮葵聍雒鲍钡拚噗锌芍喾郑编攘惧轮剔紧胯泱亲扒煺佤屡嶙蒲幺憔夙迹躞毫悱爝饴匣桥贽陆信姚儒烹弥此璇舡怡厌歉辗纤墚讽馏黝瘅癫槿钚讶惠谟碛埏拾囿镩忌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中小学庆祝第37个教师节暨表彰大会学生代表发言稿模版
- 区块链技术在教育行业的应用及培训感悟
- 医疗科技提升电子健康记录准确率的关键
- 医疗大数据挖掘解锁未来健康之钥
- 供应链管理下的分销商策略分析
- 区块链安全框架在商业应用的挑战与应对
- 医疗大数据助力公共卫生科研发展
- 乡镇食堂供货合同范例
- 医疗领域制作的视觉美学
- 保安审计合同范例
- 2025年保密教育线上培训考试试题及答案
- 2025届百师联盟高三联考模拟预测(冲刺二)语文试题含答案
- 高教版2023年中职教科书《语文》(基础模块)下册教案全册
- 中外政治思想史-形成性测试三-国开(HB)-参考资料
- DBT29-295-2021 600MPa级高强钢筋混凝土结构技术标准
- 乳腺癌患者生命质量测定量表FACT
- 本溪市生活垃圾焚烧发电项目可行性研究报告
- 基于新公共服务理论我国行政审批制度改革
- 超声引导下的塞丁格穿刺技术
- ISO17025:2017检测和校准实验室能力的通用要求( 中英对照版)
- 保密管理及注意事项培训PPT(22P)
评论
0/150
提交评论