




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、12dxxfba)(. 1A-A0)(xf0)(xfA表示以y=f(X)为曲边的曲边梯形面积ababy=f(x)0y=f(x)0 xxyy00AA3321)(AAAdxxfba则2.如果f(x)在a,b上时正,时负,如下图3.结论:的代数和表示积的值都可用区边梯形面dxxfba)(几何意义abxyy=f(x)2A1A3A044.应用例1.用定积分表示图中四个阴影部分面积积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图中,被积函数(, 0)(0)(12xfaxxf解:dxxAa200000ayxyxyxyxf(x)=x2f(x)=x2-12f(x)=1ab-12f(x)=(x-1)
2、2-15积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图中,被积函数(, 0)(21)(22xfxxf解:dxxA2210000ayxyxyxyxf(x)=x2f(x)=x2-12f(x)=1ab-12f(x)=(x-1)2-16积为义,可得阴影部分的面根据定积分的几何意上连续,且,在)在图中,被积函数(, 0)(1)(3xfbaxf解:dxAba0000ayxyxyxyxf(x)=x2f(x)=x2-12f(x)=1ab-12f(x)=(x-1)2-17可得阴影部分的面积为根据定积分的几何意义,上,在上,上连续,且在,在)在图中,被积函数(0)(20, 0)(01211) 1(
3、)(42xfxfxxf解:dxxdxxA 1) 1( 1) 1(2202010000ayxyxyxyxf(x)=x2f(x)=x2-12f(x)=1ab-12f(x)=(x-1)2-18成立。说明等式利用定积分的几何意义0sin22xdx例2:解:所以并有上,在上,上连续,且在,在在右图中,被积函数, 0sin20, 0sin0222sin)(21AAxxxxf0)(1222AAdxxf222A1Axyf(x)=sinx1-19 1.利用定积分的几何意义,判断下列定积分 值的正、负号。20sinxdx212dxx2利用定积分的几何意义,说明下列各式。 成立:0sin20 xdx200sin2sinxdxxdx1)2).1)2).练习:(A)(B)(B)3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南省楚雄州2022-2023学年高二下学期语文期末试卷(含答案)
- 2025农田地承包合同样本
- 2025各类加工合同范本
- 2025标准汽车买卖合同范本
- 2025如何认定农村土地承包合同的效力
- 2025建筑施工设备租赁合同范本
- 2025广州房屋租赁合同范本2
- 2025简约农业合作合同范本
- 《慢性便秘解析与自我管理》课件
- 《探索人生意义》课件
- 飞机结构件制造工艺演示文稿
- 体外诊断试剂的应急预案
- 饲料厂各岗位操作规程
- 中医病证诊断疗效标准
- 煤焦油加氢主要化学反应
- 社会主义核心价值观与中华传统文化
- 4M1E确认检查表模板
- 先天性心脏病诊断治疗指南
- 漏电保护器日常检查记录表
- 煤矿的防治水保障体系健全
- 万能角度尺的使用方法
评论
0/150
提交评论