版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、保证可比性的三点规定保证可比性的三点规定1. 三种截面外围图形的面积相等;三种截面外围图形的面积相等; 2. 环状截面的厚度相等;环状截面的厚度相等; 3. 三种截面外围图形的高度相等。三种截面外围图形的高度相等。一、 关于悬臂梁的载荷 悬臂梁是梁类结构的一种,其主要特征是梁的一端和支座的连接形式为“固定连接”(有时简称为“固连”或“固支”)。这种连接形式可以提供阻止结构转动、移动的约束。梁的另一端为自由端。其受力示意图如下。一、 实心截面梁的强度比较 在分析环状截面之前,我们先对实心截面梁的强度作一分析。如图 设: 矩形截面的高为h, 宽为b; 圆的直径为d,且有 d=h; 由材料力学可知,
2、截面上的弯曲应力是随离中性轴(通过截面形心)的距离成线性变化的。因此,在作强度计算时都选择截面的顶点位置来计算应力的。 表达式中,ix为该截面对于中性轴x的惯性矩,惯性矩,这个惯性矩是和截面形状相关的重要特性之一。在强度计算和型材的选择上,都离不开它。 现设:现设: 矩形截面的应力为 j 圆形截面的应力为 y 三角形截面的应力为 s xixixi 将计算点设为截面的顶点,则可得到: j;=m0.5hixj y =m0.5hixy s =m0.66hixs 式中, ixj矩形截面对x轴的惯性矩 ixy圆形截面对x轴的惯性矩 ixs三角形截面对x轴的惯性矩 由材料力学中可以知道: ixj=bh3/
3、12 ixy=h464 ixs=2bh336 现令: f=bh2=h34 可得: ixj=fh12 ixy= fh16 ixs= fh18 由此可知: ixj ixy ixs 从而得到: 在实心截面时在实心截面时, 矩形截面梁承载能力最大,矩形截面梁承载能力最大, 圆形次之,圆形次之, 三角形最小。三角形最小。xx 根据实心截面的分析思路,对环状截面的分析,仍然需要从截面的惯性矩入手。 环状截面是组合合图形,其惯性矩等于各组成图形对同一轴线惯性矩的总合。即 环状截面的惯性矩环状截面的惯性矩= =外廓图形的惯性矩外廓图形的惯性矩内廓图形内廓图形 的惯性矩的惯性矩 为了与前面实心截面相区别,我们令
4、: i ijxjx 代表矩形环状截面对x轴的惯性矩 i iyx yx 代表圆形环状截面对x轴的惯性矩 i isx sx 代表三角形环状截面对x轴的惯性矩 ijx=外矩形惯性矩内矩形惯性矩 =bh312(b2)()(h2)312 将其展开,略去的高阶项,合并整理后可得: ijx=(816)h3=0.56 h3 在材料力学教材中可以找到以圆环的平均半径和圆环厚度为参量计算惯性矩的公式: iyx=r3 为了便于比较,我们用r=(h)2代入上式,展开,略去的高阶项,经整理后可得: iyx=h38=0.39h3 根据组合图形惯性矩公式 isx=外三角形惯性矩内三角形惯性矩 用(2b2)和(h2)分别近似
5、代替内三角形的底和高,则有: isx=bh3(b)(h2)318 经展开,略去的高阶项,合并整理后可得: isx=0.31h3 在弯矩相同时,各截面顶部的应力分别为: 矩形环状截面矩形环状截面 j j=0.89m=0.89mh h2 2 圆形环状截面圆形环状截面 y y=1.28m=1.28mh h2 2 三角环状截面三角环状截面 s s=2.1m=2.1mh h2 2 因此可得到如下的预期结论:在给定的条件下,三种截面的抗弯强度比较结果为: 矩形环状截面圆形环状截面三角形环状截面矩形环状截面圆形环状截面三角形环状截面 1.由于所有分析的基础都是基于材料的弹性范围,因此,试验件选用的纸板材料应
6、具有一定的弹性变形特性,不然试验结果不会理想。 2.由于三角形截面的中性轴上下不对称,如果将其反过来放,即底边在上,其结果会有变化。 3.因为试验件属于薄壁结构,容易因薄壁失稳而提前破坏。因此在固定试件时,在梁的根部应留有弯曲变形的空间,不要因支座的尖锐边棱而使薄壁受损。 4.在推导三角环状截面的惯性矩时,内三角形的底边实际上要小于外三角形底边减去2。为了简化推导,连同高一起都作了近似处理。经验证,这种处理没有带来很大误差。至于推导中略去的高阶项,在与h相比很小时,这种处理也不会产生很大误差,对整体结论不会产生大的影响。 5.由于薄壁试件对试验条件要求比较高,学生难于驾驭,容易出现不同结果,建议教学中采用实心截面试件。 6.向学生解释试验结果时,不能用上述分析方法,而应该从惯性矩的物理涵义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津市滨海新区第四共同体2026届八年级物理第一学期期末综合测试模拟试题含解析
- 汽车销售顾问服务话术范本
- 小升初语文段落层次划分技巧
- 中小学班主任工作指导手册
- 2026届黑龙江省尚志市九年级物理第一学期期末联考试题含解析
- 传统文化节日教学课件设计
- 2026届河北省唐山路北区七校联考物理九上期末复习检测试题含解析
- 吉林省松原市宁江区2026届九年级物理第一学期期中达标检测模拟试题含解析
- 安徽宣城古泉中学2026届九年级物理第一学期期末调研试题含解析
- 成人继续教育英语考试模拟题
- 《卡拉瓦乔绘画成就》
- GB/T 16857.2-2006产品几何技术规范(GPS)坐标测量机的验收检测和复检检测第2部分:用于测量尺寸的坐标测量机
- GB 17498.8-2008固定式健身器材第8部分:踏步机、阶梯机和登山器附加的特殊安全要求和试验方法
- FZ/T 73001-2016袜子
- 医师执业、变更执业、多机构备案申请审核表
- 华南师大202-5翻译真题回忆版
- 新教育实验课件
- 传统节气立冬介绍ppt
- 消防技术服务机构设备配备要求
- 医学免疫学 实验一 斑点印迹(Dot boltting)
- 急腹症CT诊断与鉴别诊断课件
评论
0/150
提交评论