




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五单元 数学广角鸽巢问题 单元要点分析一、单元教材分析:本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,
2、所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。二、单元三维目标导向:1、知识与技能:(1)引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。3、情感态度与价值观:(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。(2)理解知识的产生过程,受
3、到历史唯物注意的教育。(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。三、单元教学重难点重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。四、单元学情分析“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程
4、度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。五、教法和学法1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是
5、“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致
6、意思说出来就可以了.六、单元课时划分:本单元计划课时数:5课时 鸽巢问题1课时 “鸽巢问题”的具体应用1课时 练习课1课时 单元测评 1课时试卷讲评 1课第五单元 数学广角鸽巢问题第一课时 课 题:鸽巢问题教学内容:教材第68-70页例1、例2,及“做一做”的第1题,及第71页练习十三的1-2题。教学目标:1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴
7、趣,使学生感受数学的魅力。教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。难点:找出“鸽巢问题”解决的窍门进行反复推理。教学准备:课件。教学过程:1 情境导入2、 探究新知1. 教学例1.(课件出示例题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律理解关键词的含义探究证明认识“鸽巢问题”的学习过程来解决问题。(1) 操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。(2) 理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不
8、管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。(3) 探究证明。方法一:用“枚举法”证明。方法二:用“分解法”证明。把4分解成3个数。由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。方法三:用“假设法”证明。通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。(4) 认识“鸽巢问题” 像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3
9、个笼子,总有1个笼子里至少有2只鸽子。这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。(5) 归纳总结:鸽巢原理(一):如果把m个物体任意放进n个抽屉里(mn,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。 2、教学例2(课件出
10、示例题2情境图)思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢?(二)如果有8本书会怎样呢?10本书呢?学生通过“探究证明得出结论”的学习过程来解决问题(一)。(1) 探究证明。方法一:用数的分解法证明。把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况:由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。方法二:用假设法证明。把7本书平均分成3份,73=2(本).1(本),若每个抽屉放2本,则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。(2
11、) 得出结论。通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。学生通过“假设分析法归纳总结”的学习过程来解决问题(二)。(1) 用假设法分析。83=2(本).2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。103=3(本).1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。(2) 归纳总结: 综合上面两种情况,要把a本书放进3个抽屉里,如果a3=b(本).1(本)或a3=b(本).2(本),那么一定有1个抽屉里至少放进(b+1)本书
12、。 鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。三、巩固练习1、完成教材第70页的“做一做”第1题。学生独立思考解答问题,集体交流、纠正。2、完成教材第71页练习十三的1-2题。学生独立思考解答问题,集体交流、纠正。四、课堂总结教学反思:第五单元 数学广角鸽巢问题第二课时 课 题:“鸽巢问题”的具体应用教学内容:教材第70-71页例3,及“做一做”的第2题,及第71页练习十三的3-4题。教学目标:1、知识与技能:在了解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。2、过程与方法
13、:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。难点:找出“鸽巢问题”中的“鸽巢”是什么,“鸽巢”有几个,在利用“鸽巢原理”进行反向推理。教学准备:课件。教学过程:一、情境导入二、探究新知1、 教学例3(课件出示例3的情境图). 出示思考的问题:盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,少要摸出几个球。学生通过“猜测验证分析推理”的学习过程解决问题。(1) 猜测验
14、证。 猜测1:只摸2个球 只要举出一个反例就可以推翻这种猜测。 就能保证这2个球 验 证 如:这两个球正好是一红一蓝时就不能同色。满足条件。 猜测2:摸出5个球, 把红、蓝两种颜色看作两个“鸽巢”,因为 肯定有2个球是同 验 证 52=2.1,所以摸出5个球时,至少有3 个球是同色的,因此摸出5个球是没必要的。 猜测1:摸出3个球, 把红、蓝两种颜色看作两个“鸽巢”,因为 至少有2个球是同 验 证 32=1.1,所以摸出3个球时,至少有3 色的。 2个是同色的。 综上所述,摸出3个球,至少有2个球是同色的。 (2)分析推理。根据“鸽巢原理(一)”推断:要保证有一个抽屉至少有2个球,分的无图个数
15、失少要比抽屉数多1。现在把“颜色种数”看作“抽屉数”,结论就变成了“要保证摸出2个同色的球,摸出的球的个数至少要比颜色种数多1”。因此,要从两种颜色的球中保证摸出2个同色的,至少要摸出3个球。2、 趁热打铁:箱子里有足够多的5种不同颜色的球,最少取出多少个球才能保证其中一定有2个颜色一样的球?学生独立思考解决问题,集体交流。3、 归纳总结:运用“鸽巢原理”解决问题的思路和方法:(1) 分析题意;(2) 把实际问题转化成“鸽巢问题”,弄清“鸽巢”和分放的“鸽子”。(3) 根据“鸽巢原理”推理并解决问题。 三、巩固练习1、完成教材第70页的“做一做”的第2题。(学生独立解答,集体交流。)2、完成教
16、材第71页的练习十三的第3-4题。(学生独立解答,集体交流。)3、课外拓展延伸题:一个布袋里有红色、黑色、蓝色的袜子各8只。每次从布袋里最少要拿出多少只可以保证其中有2双颜色不同的袜子?(袜子不分左右)四、课堂总结教学反思:第五单元 数学广角鸽巢问题第三课时 课 题:练习课教学内容:教材71页练习十三的5、6题,及相关的练习题。教学目标:1、知识与技能:进一步熟知“鸽巢原理”的含义,会用“鸽巢原理”熟练解决简单的实际问题。2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,
17、激发学生的学习兴趣,使学生感受数学的魅力。 教学重难点重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。教学准备:课件。教学过程: 一、复习导入二、指导练习(一)基础练习题1、填一填: (1)水东小学六年级有30名学生是二月份(按28天计算)出生的,六年级至少有( )名学生的生日是在二月份的同一天。 (2)有3个同学一起练习投篮,如果他们一共投进16个球,那么一定有1个同学至少投进了( )个球。(3)把6只鸡放进5个鸡笼,至少有( )只鸡要放进同1个鸡笼里。(4)某班有个小书架,40个同学可以任意借阅,小书
18、架上至少要有( )本书,才可以保证至少有1个同学能借到2本或2本以上的书。学生独立思考解答,集体交流纠正。2、 解决问题。(1)(易错题)六(1)班有50名同学,至少有多少名同学是同一个月出生的?(2)书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书。一次至少要拿出多少本书?(3)把16支铅笔最多放入几个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6支?(二)拓展延伸题1、把27个球最多放在几个盒子里,可以保证至少有1个盒子里有7个球?教师引导学生分析:盒子数看作抽屉数,如果要使其中1个抽屉里至少有7个球,那么球的个数至少要比抽屉数的(7-1)倍多1个,而(27-1)(7
19、-1)=4.2,因此最多放进4个盒子里,可以保证至少有1个盒子里有7个球。教师引导学生规范解答:2、 一个袋子里装有红、黄、蓝袜子各5只,一次至少取出多少只可以保证每种颜色至少有1只?教师引导学生分析:假设先取5只,全是红的,不符合题意,要继续去;假设再取5只,5只有全是黄的,这时再取一只一定是蓝色的,这样取52+1=11(只)可以保证每种颜色至少有1只。教师引导学生规范解答:3、六(2)班的同学参加一次数学考试,满分为100分,全班最低分是75。已知每人得分都是整数,并且班上至少有3人的得分相同。六(2)班至少有多少名同学?教师引导学生分析:因为最高分是100分,最低分是75分,所以学生可能
20、得到的不同分数有100-745+1=26(种)。教师引导学生规范解答:三、巩固练习:完成教材第71页练习十三的5、6题。(学生独立思考解答问题,集体交流、纠正。)四、课堂总结板书设计: 教学反思: 抽屉原理规律:用苹果数除以抽屉数,若除数不为零,则“答案”为商加1;若除数为零,则“答案”为商抽屉原则一:把n个以上的苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有两个苹果。抽屉原则二:把多于m x n 个苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。一、 基础训练。1、 把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽
21、屉,它里面至少有_个苹果。9810=982、 1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少有_只鸽子。100050=203、 从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出_个苹果。178=214、 从_个抽屉中(填最大数)拿出25个苹果,才能保证一定能找出一个抽屉,从它当中至少拿出7个苹果。25(4)=6(1)二、 拓展训练。1、 六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分以上后就说:“我可以断定,本班至少有4人成绩相同”。王老师说的对吗?为什么(49-3)15=3186
22、,87,88,89,90,91,92,93,94,95,96,97,98,99,100十五个数2、 从1、2、3,100这100个数中任意挑出51个数来,证明这51个数中,一定有(1)2个数互质 任一个奇数都可以和偶数成互质数50个偶数,任意挑出51个数来必会有奇数与偶数 (2)有两个数的差是50(1,51)(2,52)(3,53)(49,99)(50,100)50组若取51个每组可取1个共50个,另一个任意取一个,就能组成差是505150=113、 圆周上有2000个点,在其上任意地标上0、1、2、1999(每一点只标一个数,不同的点标上不同的数),求证:必然存在一点,与它紧相邻的两个数和这
23、点上所标的三个数之和不小于2999.(0+1999)*20002=199900019990002000*3=4、 有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号,证明:在200个信号中至少有四个信号完全相同。4*4*4=6420064=38在圆周上放着100个筹码,其中有41个红的和59个蓝的,那么总可以找到两个红筹码,在他们之间刚好有19个筹码,为什么?5、 试卷上有4道题,每题有3个可供选择的答案,一群学生参加考试,结果对于其中任何三 人都有一道题目的答案互不相同,问:参加考试的学生最多有多少人?6、 一次数学竞赛,有75人参加,满分为20分,参赛者得分都是整数,75人的总分是9
24、80分,至少有几分得分相同?7、 某校六年级学生有31人是四月份出生的,请证明:至少有两人在同一天出生。3130=118、 袋子里有四种不同颜色的小球,每次摸出2个,要保证10次所摸得的结果是一样的,至少要摸多少次?(4*3*)(2*1)=6(55)6=919、 一副扑克牌共有54张,从中取出多少张,才能保证其中必有3种花色。(9)4=219+2=1110、 图书角剩下科技书和文艺书各4本,现在有4个学生来借阅,每人从中借2本,请你证明,必有两名学生借阅的图书完全相同。11、 在一条长100米的小路一旁种上101棵小树,不管怎么种,至少有两棵树苗之间的距离不超过1米。12、 六年级有男生57人
25、,证明:至少有两名男生在同一个星期过生日。5752=1514、19朵鲜花插入4个花瓶里,证明:至少有一个花瓶里要插入5朵或5朵以上的鲜花。194=4313、 某旅行团一行50人,随意游览甲、乙、丙三地,至少要有多少人游览的地方完全相同?503=162一.图形分割例1.在边长为1的正方形内任意放13个点.证明:必定存在4点,使得以这4点为顶点的四边形面积不超过.证:如图,将正方形分成4个面积是的矩形,13个点必有4点落在同一个矩形中,其面积不超过. 例2.半径为1的圆内任意放7个点,证明:必有2点,它们间的距离不大于1.证:如图,将圆分成6个相等的扇形,7点中必有2点落在同一个扇形中,易知它们的
26、距离不大于1. 例3.在34的长方形中,任意放6个点. 证明:必有2点,它们间的距离不大于 . 证:如图,将长方形分成5块,6点中必有2点落在同一块中,易知它们的距离不大于 . 二.数的问题例4.任意给出7个不同整数. 证明:必有2个整数,其和或差是10的倍数. 证:按除以10的余数将整数分成10类,将这10类分成如下6组:0(表示除以10余0的所有整数);1、9;2、8;3,7;4,6;5. 7个数中必有2个来自同一组,若它们同类,则差是10的倍数;若不同类,则和是10的倍数. 例5.证明:存在一个这样的正整数,其各位数码是0或1,并且是1993的倍数. 证明:考虑如下1993个数:10,1
27、10,1110, . 若其中有数是1993的倍数,则证毕;否则它们除以1993的余数只能是1,2,1992,必有两数除以1993余数相同,它们的差是1993的倍数,显然此差的各位数码是0或1. 例6.任意写一个数码由1、2、3组成的30位数,从这个30位数中任意截取相邻的3位数字,可组成一个3位数. 证明:按上述方式一定可以得到两个相同的3位数. 证:一共可截取28个3位数,而数码由1、2、3组成的三位数有33=27个,必有两数相同. 例7.任意给定n+1个小于2n的不同正整数,证明:必可从中选出3个数,使其中两个之和等于第三个.证:设这n+1个正整数是a0a1a2an2n,令bk=aka0(
28、k=1,2,n),则b1b2bn2n,考虑a1,a2,an,b1,b2,bn这2n个正整数,它们都小于2n,故必有两数相等,设ai=bj(ij,否则ai=bi=aia0,不可能),则ai=aja0,即a0+ai=aj. 三.染色问题例8.对37棋盘的每个方格染红蓝两色之一. 证明:存在一个由若干方格构成的矩形,其4个角上的方格同色.证法一:每一列中2格同色,用一条相同颜色的线段连结这2格的中心,得到7条线段,必有4条同色,设为红色. 由于连线方式只有3种(3格中选两格),必有两条红色线段连线方式相同,其所对应的4格构成4角都是红色的矩形. 证法二:第一行至少有4格同色,不妨设前4格是红色,若第
29、二行前4格中有两格红色,则找到4角同是红色的矩形;否则至少有3格是蓝色,不妨设是前3格. 此时第三行的前3个必有两格同色,若是红色,则其与第一行相同列的两个红格组成4角同是红色的矩形;若是蓝色,则其与第二行相同列的两个蓝格组成4角同是蓝色的矩形. 例9.平面上有6个点,其中任何3点都不共线,任意两点间连一条红色线段或蓝色线段,证明:一定存在一个同色三角形(三边颜色相同的三角形). 证:由某点A出发的5条线段中必有3条同色,不妨设AB1、AB2、AB3是红色,考虑线段B1B2、B1B3、B2B3,若其中有红色线段BiBj,则ABiBj是红色三角形;若全是蓝色,则B1B2B3是蓝色三角形. 评注:如果把点看成元素,染红色看成是元素间有关系A,染蓝色看成是元素间没有关系A,那么本题可表述为:给定6个元素,任意2个元素间或者有关系A或者没有关系A,则一定可以选出3个元素,它们两两间有关系A或者两两间没有关系A. 比如把元素改成人,2个元素间的关系改成彼此认识,则可得到如下有趣命题:世界上任意选6个人,证明:一定可以从中找出3个人,他们两两认识或两两不认识. 四.“连续”问题例10.某学生用11个星期做完数学复习题,他每天至少做一道题,每星期至多做12道题. 证明:一定存在连续的若干天,他恰好做了21道题. (教程P295/7)证:设此学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Gestodene-d7-生命科学试剂-MCE
- 国际商务培训课件下载
- GLUT4-activator-3-生命科学试剂-MCE
- 设备保养基础知识培训课件
- 城市级资产配置分析-洞察及研究
- 机械切削知识培训内容课件
- 消防站培训防火检查知识课件
- 输液泵及注射泵培训考试试题及答案
- 2025年经济师考试农业经济(中级)专业知识和实务试题含答案
- 系统规划与管理师考试试题及答案
- 装修施工项目投标书模板
- 1《哦香雪》公开课一等奖创新教学设计统编版高中语文必修上册
- 2024-2030年中国天然气制合成油行业需求量预测与营销战略分析研究报告
- 直播电商监管的国际比较与借鉴
- 《孩子来了:如何度过最艰难的育儿时刻》记录
- 2023年新疆维吾尔自治区喀什地区莎车县水利局公务员考试《行政职业能力测验》历年真题及详解
- 港区泊位码头工程施工组织设计(图文)
- 提高CSSD手术器械的清洗率医院护理品管圈QCC成果汇报课件(完整版本易修改)
- DZ∕T 0033-2020 固体矿产地质勘查报告编写规范(正式版)
- 健康讲座:颈椎病
- 金融数据分析 课件 欧阳资生 第1-5章 导论、金融时间序列线性模型 -极值事件
评论
0/150
提交评论