33高阶导数PPT教学课件_第1页
33高阶导数PPT教学课件_第2页
33高阶导数PPT教学课件_第3页
33高阶导数PPT教学课件_第4页
33高阶导数PPT教学课件_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、高阶导数的定义问题问题: :变速直线运动的加速度变速直线运动的加速度.),(tfs 设设)()(tftv 则瞬时速度为则瞬时速度为的变化率的变化率对时间对时间是速度是速度加速度加速度tva. )()()( tftvta定义定义.)() )(,)()(lim) )(,)()(0处的二阶导数处的二阶导数在点在点为函数为函数则称则称存在存在即即处可导处可导在点在点的导数的导数如果函数如果函数xxfxfxxfxxfxfxxfxfx 第1页/共17页记作记作.d)(ddd,),(2222xxfxyyxf或或 记作记作阶导数阶导数的的函数函数阶导数的导数称为阶导数的导数称为的的函数函数一般地一般地,)

2、(1)(,nxfnxf .d)(ddd,),()()(nnnnnnxxfxyyxf或或三阶导数的导数称为四阶导数三阶导数的导数称为四阶导数, 二阶和二阶以上的导数统称为二阶和二阶以上的导数统称为高阶导数高阶导数.)(;)(,称称为为一一阶阶导导数数称称为为零零阶阶导导数数相相应应地地xfxf .dd,),(33xyyxf 二阶导数的导数称为三阶导数二阶导数的导数称为三阶导数,.dd,),(44)4()4(xyyxf第2页/共17页二、 高阶导数求法举例例例).0(),0(,arctanffxy 求求设设解解211xy )11(2 xy22)1(2xx )1(2(22 xxy322)1()13(

3、2xx 022)1(2)0( xxxf0322)1()13(2)0( xxxf; 0 . 2 1.1.直接法直接法: :由高阶导数的定义逐步求高阶导数由高阶导数的定义逐步求高阶导数.第3页/共17页例例.),()(nyRxy求求设设 解解1 xy)(1 xy2)1( x3)2)(1( x)1(2 xy)1()1()1()( nxnynn则则为自然数为自然数若若,n )()()(nnnxy , !n ) !()1( nyn. 0 几个基本初等函数的几个基本初等函数的n阶导数阶导数 第4页/共17页例例.),1ln()(nyxy求求设设 解解注意注意: :xy 112)1(1xy 3)1(! 2x

4、y 4)4()1(! 3xy )1! 0, 1()1()!1()1(1)( nxnynnn 求求n阶导数时阶导数时,求出求出1-3或或4阶后阶后,不要急于合并不要急于合并,分析结果的规律性分析结果的规律性,写出写出n阶导数阶导数.(数学归纳法证明数学归纳法证明)第5页/共17页例例.,sin)(nyxy求求设设 解解xycos )2sin( x)2cos( xy)22sin( x)22sin( x)22cos( xy)23sin( x)2sin()( nxyn)2cos()(cos)( nxxn同理可得同理可得第6页/共17页2. 高阶导数的运算法则高阶导数的运算法则:则则阶导数阶导数具有具有

5、和和设函数设函数,nvu)()()()()1(nnnvuvu )()()()2(nnCuCu )()(0)()()()2()1()()(!)1()1(! 2)1()()3(kknnkknnkknnnnnvuCuvvukknnnvunnvnuvuvu 莱布尼兹公式莱布尼兹公式第7页/共17页例例.,)20(22yexyx求求设设 解解则由莱布尼兹公式知则由莱布尼兹公式知设设,22xveux 0)()(! 2)120(20)()(20)(2)18(22)19(22)20(2)20( xexexeyxxx22! 21920222022182192220 xxxexexe)9520(22220 xxe

6、x第8页/共17页3.3.间接法间接法: :常用高阶导数公式常用高阶导数公式nnxnx )1()1()()4()(nnnxnx)!1()1()(ln)5(1)( )2sin()(sin)2()( nkxkkxnn)2cos()(cos)3()( nkxkkxnn)0(ln)()1()( aaaanxnxxnxee )()( 利用已知的高阶导数公式利用已知的高阶导数公式, 通过四则通过四则1)(!)1()1( nnnxnx运算运算, 变量代换等方法变量代换等方法, 求出求出n阶导数阶导数.第9页/共17页例例.,11)5(2yxy求求设设 解解)1111(21112 xxxy)1(! 5)1(!

7、 52166)5( xxy)1(1)1(16066 xx第10页/共17页例例.,cossin)(66nyxxy求求设设 解解3232)(cos)(sinxxy )coscossin)(sincos(sin422422xxxxxx xxxx22222cossin3)cos(sin x2sin4312 24cos1431x x4cos8385 ).24cos(483)( nxynn第11页/共17页三、小结高阶导数的定义及物理意义高阶导数的定义及物理意义;高阶导数的运算法则高阶导数的运算法则(莱布尼兹公式莱布尼兹公式);n阶导数的求法阶导数的求法;1.直接法直接法;2.间接法间接法.第12页/共

8、17页思考题思考题1 设设 连续,且连续,且 ,)(xg )()()(2xgaxxf 求求 .)(af 第13页/共17页思考题解答思考题解答)(xg可导可导)()()()(2)(2xgaxxgaxxf )(xg 不一定存在不一定存在故用定义求故用定义求)(af )(af axafxfax )()(lim0)( afaxxfax )(lim)()()(2limxgaxxgax )(2ag 第14页/共17页2 2.,)43()32)(2()6(32yxxxy求求设设 解解 分析分析此函数是此函数是6次多项式次多项式, 故不需将函数因式全乘出来故不需将函数因式全乘出来.因为因为)()3()2(532xpxxxy )(10856xpx )(5xp其中其中为为x的的6次多项式次多项式,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论