




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、ABCA1B1C1A =A1,B =B1, C =C1,如果如果则则ABC 与与A1B1C1 相似,相似,记作记作ABC A1B1C1。 要把表示对应角顶点的要把表示对应角顶点的字母写在对应的位置上。字母写在对应的位置上。注意注意KCAACCBBCBAAB中与在111CBAABC第1页/共45页相似比相似比相似的表示方法相似的表示方法符号:符号: 读作:相似于读作:相似于kABCCBAkCBAABC1111111的相似比为与则,的相似比为与如果ABCA1B1C1?第2页/共45页 如图,任意画两条直线l1、l2,再画三条与l1、l2相交的平行线l3、l4 、l5.分别度量l3、l4 、l5 在
2、l1上截得的两条线段AB,BC和在l2上截得的两条线段DE,EF的长度, 相等吗?ABCDEFl1l2l3l4l5EFDEBCAB与 任意平移l5,再度量AB,BC,DE,EF的长度. 相等吗?EFDEBCAB与第3页/共45页 事实上,当事实上,当L3/L4/L5时,都可以得到时,都可以得到 EFDEBCAB与,还可以得到: :平行线分线段成比例定理:平行线分线段成比例定理:,EFDEBCAB,DFDEACAB,DEEFABBC,DFEFACBCDEDFABAC,EFDFBCACABCDEFl1l2l3l4l5 三条平行线截两条直线,所得的对应线段的比相等.第4页/共45页 平行于三角形一边
3、的直线截其他两边(或两边的延长线),所得的对应线段的比相等.ABCDEl1l2l3l4l5ABCDEl1l2l3l4l5第5页/共45页 已知:已知:DE/BC,且,且D是边是边AB的中点的中点,DE交交AC于于E . 猜想:猜想:ADE与与ABC有什么关系有什么关系?并证明。并证明。ABCDE证明证明:且且 A= A DE / BC1 =B,2 =C ADE与与ABC的对应角相等的对应角相等相似。相似。1 2第6页/共45页三角形的中位线截得的三角形与原三角形相似,相似比三角形的中位线截得的三角形与原三角形相似,相似比 。 四边形四边形DBFE是平行四边形是平行四边形 DE=BF , DB=
4、 EF ADE ABCABCDEF过过E作作EF/AB交交BC于于F 又又 DE / BC又又 AD = DB AD = EF A =3, 2 =C ADE EFC DE = FC =BF, ADE与与ABC的对应边成比例的对应边成比例23AE=EC12AEAC12DEBC12ADAEDEABACBC12第7页/共45页已知:已知:DE/BC,ADE与与ABC有什么关系有什么关系?猜想:猜想:ADE与与ABC有什么关系有什么关系?相似。相似。ABCDEF当点当点D在在AB上任意一点时,上面的结论还成立吗?上任意一点时,上面的结论还成立吗?12你能证明吗?你能证明吗?第8页/共45页 平行于三角
5、形一边的直线和其他两边平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。相交,所构成的三角形与原三角形相似。知识要点知识要点相似三角形判定的预备定理相似三角形判定的预备定理ABCDE即:即:在在ABC中,中,如果如果DEBC,那么那么ADEABCA型型 你还能画出其你还能画出其他图形吗?他图形吗?第9页/共45页ABCDE相似具有传递性相似具有传递性ADEABCMN 如果再作如果再作 MNDE ,共有多少对相似三角形?,共有多少对相似三角形?AMNADEAMNABC共有三对相似三角形。共有三对相似三角形。第10页/共45页 平行于三角形一边的直线和其他两边平行于三角形一边的直
6、线和其他两边(或(或两边的延长线)两边的延长线)相交,所构成的三角形与三角相交,所构成的三角形与三角形相似。形相似。DEACB延伸延伸即:即:如果如果DEBC,那么那么ADEABC你能证明吗?你能证明吗?X型型 MN第11页/共45页 平行于三角形一边的直线截其它两边,平行于三角形一边的直线截其它两边,所得的所得的对应线段成比例对应线段成比例。推论推论ABCDE即:即:在在ABC中,中,如果如果DEBC,那么那么,ADAEDEABACBC,ADAEDBEC,DBECADAE,ABACBCADAEDE(上比全,(上比全, 全比上)全比上)(上比下,下比上)(上比下,下比上)(下比全,全比下)(下
7、比全,全比下)DBECABAC,,ABACDBEC第12页/共45页定义定义判定方法判定方法全等全等三角三角形形相似相似三角三角形形回顾并思考回顾并思考三角、三边对三角、三边对应相等的两个应相等的两个三角形全等三角形全等三角对应相等三角对应相等, 三三边对应成比例的两边对应成比例的两个三角形相似个三角形相似 角边角角边角ASA角角边角角边AAS边边边边边边SSS边角边边角边SAS斜边与直角边斜边与直角边HL 判定三角形相似,是不是也有这么多种方法呢?判定三角形相似,是不是也有这么多种方法呢?第13页/共45页已知:已知:ABCA1B1C1.A1B1C1ABC111111.ABBCACABBCA
8、C求证:求证:探究探究2第14页/共45页 证明:在线段证明:在线段 (或它的延长线)上截(或它的延长线)上截取取 ,过点,过点D作作 ,交,交 于点于点E根据前面的定理可得根据前面的定理可得 .11AB1ADAB11DEBC11AC1111ADEABCA1B1C1ABCDE第15页/共45页11111111ADAEDEABBCAC1111111,ABBCACADABABBCAC1AEAC,DEBC111ABCABC1ADEABC又又A1B1C1ABCDE111111111,AEDEBCACBCBCACAC(SSS)1111ADEABC第16页/共45页 如果两个三角形的三组对应边的比如果两个
9、三角形的三组对应边的比相等,那么这两个三角形相似。相等,那么这两个三角形相似。知识要点知识要点判定三角形相似的定理之一判定三角形相似的定理之一ABCA1B1C1.111111,ABBCACABBCAC即:即:如果如果那么那么A1B1C1ABC 三边对应成比例,两三角形相似。三边对应成比例,两三角形相似。边边边边边边SSS第17页/共45页ABBCACADDEAE,求证:求证:BAD=CAE。ADCEBABCADEBAC=DAEBACDAC =DAEDAC即即BAD=CAE已知:已知:解:解:ABBCACADDEAE,第18页/共45页边角边边角边SAS探究探究2已知:已知:ABCA1B1C1.
10、A1B1C1ABC1111,ABBCkABBC求证:求证:B =B1 .你能证明吗?你能证明吗?第19页/共45页 如果两个三角形的两组对应边的比相如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三等,并且相应的夹角相等,那么这两个三角形相似。角形相似。知识要点知识要点判定三角形相似的定理之二判定三角形相似的定理之二两边对应成比例,且夹角相等,两边对应成比例,且夹角相等,两三角形相似。两三角形相似。边角边边角边SASA1B1C1ABCABCA1B1C1.即:即:如果如果1111,ABBCkABBCB =B1 .那么那么第20页/共45页 大家一起画一个三角形大家一起画一个三角
11、形 ,三个角分别为,三个角分别为60、45、75,大家画出的三角形相似吗,大家画出的三角形相似吗?同桌的同桌的同学,通过测量对应边的长度进行比较。同学,通过测量对应边的长度进行比较。探究探究3即:如果一个三角形的三个角分别与另一个三角形即:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形的三个角对应相等,那么这两个三角形_。相似相似一定需要三一定需要三个角吗?个角吗?第21页/共45页角边角角边角ASA角角边角角边AAS角角角角AAA1B1C1ABC已知:已知:ABCA1B1C1.求证:求证:A =A1,B =B1 .你能证明吗?你能证明吗?第22页/共45页 如果两
12、个三角形的两个角与另一个如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形的两个角对应相等,那么这两个三角形相似。三角形相似。知识要点知识要点判定三角形相似的定理之三判定三角形相似的定理之三两角对应相等,两三角形相似。两角对应相等,两三角形相似。角角角角AAA1B1C1ABCABCA1B1C1.即:即:如果如果那么那么A =A1,B =B1 .第23页/共45页 如果两个三角形有一个内角对应相如果两个三角形有一个内角对应相等,那么这两个三角形一定相似吗?等,那么这两个三角形一定相似吗?一角对应相等的两个三角形不一定相似。一角对应相等的两个三角形不一定相似。第24页/共45页
13、ACD CBD ABC找出图中所有的相似三角形。找出图中所有的相似三角形。射影定理图射影定理图BDAC有三对相似三角形:有三对相似三角形:ACD CBDCBD ABCACD ABC第25页/共45页常用的成比例的线段:常用的成比例的线段:常用的相等的角:常用的相等的角:A =DCB ;B =ACD2ACAD AB2BCBD AB2CDAD DBAC BCAB CDBDAC射影定理射影定理第26页/共45页例题已知:已知:DEBC,EFAB.求证:求证:ADEEFC. AEFBCD解解: DEBC,EFAB(已知)(已知) ADEBEFC (两直线平行,同位角相等)(两直线平行,同位角相等)AE
14、DC(两直线平行,同位角相等)(两直线平行,同位角相等) ADEEFC (两个角分别对应相等的两个三角形相似)(两个角分别对应相等的两个三角形相似)第27页/共45页相似三角形对应高的比等于相似比相似三角形对应高的比等于相似比 ABC A1B1C1 B = B1 又又ADB = A1D1B1 =900 ADB A1D1B1(角角)(角角)1111ADABkADABA1B1C1ABCDD1证明:证明:第28页/共45页相似三角形对应角平分线的比等于相似比相似三角形对应角平分线的比等于相似比 ABC A1B1C1 B = B1,BAC = B1A1C1 AD,A1D1分别是分别是BAC和和B1A1
15、C1的角平分线的角平分线 BAD = B1A1D1 ADB A1D1B1(角角)(角角)1111ADABkADABA1B1C1ABCDD1证明:证明:第29页/共45页相似三角形对应中线的比等于相似比相似三角形对应中线的比等于相似比A1B1C1ABCDD11111ADABkADAB第30页/共45页探究探究4已知:已知:ABCA1B1C1.1111,ABBCkABBC求证:求证:你能证明吗?你能证明吗?HLABCA1B1C1RtABC 和和 RtA1B1C1.第31页/共45页 如果一个直角三角形的如果一个直角三角形的斜边斜边和一条和一条直角直角边边与另一个直角三角形的斜边和一条直角边与另一个
16、直角三角形的斜边和一条直角边对应成比例,对应成比例, 那么这两个直角三角形相似。那么这两个直角三角形相似。知识要点知识要点判定三角形相似的定理之四判定三角形相似的定理之四HLABCABCA1B1C1.即:即:如果如果那么那么A1B1C11111,ABBCkABBCRtABC 和和 RtA1B1C1.第32页/共45页1. 相似图形三角形的判定方法:相似图形三角形的判定方法: 通过定义通过定义 平行于三角形一边的直线平行于三角形一边的直线 三边对应成比例三边对应成比例 两边对应成比例且夹角相等两边对应成比例且夹角相等 两角对应相等两角对应相等 两直角三角形的斜边和一条直角边对应成比例两直角三角形
17、的斜边和一条直角边对应成比例(三边对应成比例,三角相等)(三边对应成比例,三角相等)(SSS)(AA)(SAS)(HL)第33页/共45页 对应角相等。对应角相等。 对应边成比例。对应边成比例。 对应高的比等于相似比。对应高的比等于相似比。 对应中线的比等于相似比。对应中线的比等于相似比。 对应角平分线的比等于相似比。对应角平分线的比等于相似比。2. 相似三角形的性质:相似三角形的性质:第34页/共45页(1)所有的等腰三角形都相似。)所有的等腰三角形都相似。(2)所有的等腰直角三角形都相似。)所有的等腰直角三角形都相似。(3)所有的等边三角形都相似。)所有的等边三角形都相似。(4)所有的直角
18、三角形都相似。)所有的直角三角形都相似。(5)有一个角是)有一个角是100 的两个等腰三角形都相似。的两个等腰三角形都相似。(6)有一个角是)有一个角是70 的两个等腰三角形都相似。的两个等腰三角形都相似。(7)若两个三角形相似比为)若两个三角形相似比为1,则它们必全等。,则它们必全等。(8)相似的两个三角形一定大小不等。)相似的两个三角形一定大小不等。1. 判断下列说法是否正确?并说明理由。判断下列说法是否正确?并说明理由。第35页/共45页 2. ADBC于点于点D, CEAB于点于点 E ,且,且交交AD于于F,你能从中找出几对相似三角形?,你能从中找出几对相似三角形?BCAEDF第36
19、页/共45页503010030303. 下面两组图形中的两个三角形是否相似?为什么?下面两组图形中的两个三角形是否相似?为什么?ACBA1C1B1DEFABC60相似相似相似相似第37页/共45页 4. 过过ABC(CB)的边的边AB上一点上一点D 作一条直线与另一边作一条直线与另一边AC相交,截得的小三角相交,截得的小三角形与形与ABC相似,这样的直线有几条?相似,这样的直线有几条?CD 第38页/共45页BCADEEBCAD ADE ABC AED ABCA=AAED=CA=AAED=B作作DE,使,使AED=C作作DE,使,使AED=B这样的直线有两条:这样的直线有两条:第39页/共45页 5. 已知:如图,已知:如图,ABEF CD,图中共有,图中共有_对对相似三角形。相似三角形。CDABEFO3EOFCOD ABEFAOB FOE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课件中插入AVI格式视频的方法
- 2025年彩票公司财务经理面试题库及答案
- 2025年航空乘务员专业技能考核试题及答案解析
- 2025年大学生安全常识测试题
- 机电知识培训的目的和意义
- 2025年宠物摄影摄像师高级面试常见问题集锦
- 2025年安全管理C卷模拟测试题解析
- 2025年农村扶贫助理招聘面试题及答案解析
- 学校教学常规检查课件
- 机电服务顾问基础知识培训课件
- 2025年生猪屠宰检疫竞赛题库
- 2025年广西公需科目答案02
- 小学教育教学工作计划范文(5篇)
- 汽轮机汽封系统
- 《大随求陀罗尼》罗马拼音与汉字对照版
- 中国人健康大数据2023年
- 职工医疗互助保障计划、女职工安康互助保障计划互助金申请表
- 宾馆饭店消防安全排查整治标准
- GB 16869-2005鲜、冻禽产品
- 材料科学基础(全套429张课件)
- 整机部整机出货检验重点标准
评论
0/150
提交评论