




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、11.2.1平面的基本性质与推论平面的基本性质与推论2一平面的基本性质:一平面的基本性质: 1公理公理1:文字语言:如果一条直线上的两点在文字语言:如果一条直线上的两点在一个平面内,那么这条直线上的所有点一个平面内,那么这条直线上的所有点都在这个平面内都在这个平面内 ;图形语言:图形语言:符号语言:符号语言:Al;Bl,A,B AB . 3练习:练习:(1)AB 。AB(2),lAl 。A公理公理1的作用有两个:(的作用有两个:(1)作为)作为判断和证判断和证明直线是否在平面内明直线是否在平面内的依据,即只需要看的依据,即只需要看直线上是否有两个点在平面内就可以了;直线上是否有两个点在平面内就
2、可以了;4(2)公理)公理1可以用来可以用来检验某一个面是否为检验某一个面是否为平面平面,检验的方法为:把一条直线在面内,检验的方法为:把一条直线在面内旋转,固定两个点在面内后,如果其他点旋转,固定两个点在面内后,如果其他点也在面内,则该面为平面。也在面内,则该面为平面。52公理公理2:文字语言:经过文字语言:经过不在同一条直线不在同一条直线上的三上的三点,有且只有一个平面,也可以说成不共点,有且只有一个平面,也可以说成不共线的三点线的三点确定确定一个平面。一个平面。图形语言:图形语言:符号语言:符号语言:A、B、C三点不共线,有且三点不共线,有且只有一个平面只有一个平面,使得,使得A,B,
3、C.确定一平面不共线CBACBA,6如何如何理解理解公理公理2? 公理公理2是是确定平面确定平面的条件的条件. (1)深刻理解深刻理解“有且只有有且只有”的含义,这里的的含义,这里的“有有”是说平面存在,是说平面存在,“只有只有”是说平面是说平面惟一,惟一,“有且只有有且只有”强调平面强调平面存在并且惟存在并且惟一一这两方面这两方面.73. 公理公理3:文字语言:如果不重合的两个平面有一文字语言:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个个公共点,那么它们有且只有一条过这个点的公共直线点的公共直线.图形语言:图形语言:符号语言:符号语言:Pl.P()=l8如何理解公理如何理解
4、公理3?(1) 公理公理3反映了反映了平面与平面的位置关系平面与平面的位置关系,只要只要“两面共一点两面共一点”,就有,就有“两面共一线两面共一线,且过这一点,线惟一且过这一点,线惟一”.(2) 从集合的角度看,对于不重合的两个平从集合的角度看,对于不重合的两个平面,只要他们有公共点,它们就是相交的面,只要他们有公共点,它们就是相交的位置关系,位置关系,交集是一条直线交集是一条直线.9(3) 公理公理3的作用的作用: 其一判定其一判定两个平面是否相交两个平面是否相交; 其二可以其二可以判定点在直线上判定点在直线上. 点是某两个点是某两个平面的公共点,线是这两个平面的公共交平面的公共点,线是这两
5、个平面的公共交线,则这点在线上线,则这点在线上. 因此它还是证明因此它还是证明点共线点共线或或线共点线共点,并,并且作为且作为画截面画截面的依据的依据.10二二. 平面基本性质的推论平面基本性质的推论 文字语言文字语言 :经过一条直线和直线外的一:经过一条直线和直线外的一点,有且只有一个平面点,有且只有一个平面. 图形语言:图形语言: 符号语言:符号语言: a与与A共属于平面共属于平面且平面且平面惟一惟一 .(1)推论推论1: a是任意一条直线是任意一条直线 点点A a 11(2)推论)推论2: 文字语言文字语言 :经过两条相交直线,有且只有一经过两条相交直线,有且只有一个平面个平面. 图形语
6、言:图形语言: 符号语言:符号语言: a,b共面于平面共面于平面,且,且是惟一的是惟一的 .b是任意一条直线是任意一条直线 a是任意一条直线是任意一条直线 ab=A12(2)推论)推论3: 文字语言文字语言 :经过两条平行直线,有且只有一经过两条平行直线,有且只有一个平面个平面. 图形语言:图形语言: 符号语言:符号语言: a,b共面于平面共面于平面,且,且是惟一的是惟一的 .a,b是两条直线是两条直线 a/b13m图图2l三、空间中两直线的位置关系三、空间中两直线的位置关系lmP图图1从图中可见,直线从图中可见,直线 l 与与 m 既不相交,既不相交,也不平行。空间中直线之间的这种关也不平行
7、。空间中直线之间的这种关系称为系称为异面直线异面直线。14不同在任何一个平面内的两条直线叫做不同在任何一个平面内的两条直线叫做异异面直线面直线。(既不相交也不平行的两条直线。(既不相交也不平行的两条直线)1、异面直线、异面直线判断:判断:(1)图中直线图中直线m和和l是异面直线吗是异面直线吗?lmml(2) ,则则a与与b是异面直线吗?是异面直线吗?,ab(3) a,b不同在平面不同在平面内内,则则a与与b是异面吗?是异面吗?15异面直线的画法异面直线的画法: 通常用一个或两个平面来衬托通常用一个或两个平面来衬托, 异面直异面直线线不同在任何一个平面不同在任何一个平面的特点的特点.ababab
8、16(1)相交相交(2)平行平行只有一个公共点只有一个公共点 没有公共点没有公共点在同一平面在同一平面ml2、空间中两直线的三种位置关系、空间中两直线的三种位置关系(3)异面直线异面直线mPl没有公共点没有公共点不同在任一平面不同在任一平面mlP17探究探究:HGCADBEFGHEF(B)(C)DA 一个正方体的展开图如上,则一个正方体的展开图如上,则AB,CD, EF,GH这四条线段所在的直线是异面直这四条线段所在的直线是异面直线的有几对线的有几对?相交直线有几对相交直线有几对?平行直线平行直线有几对有几对?18直线和平面位置关系的符号表示直线和平面位置关系的符号表示. (1)点)点A在平面
9、在平面内,记作内,记作A,点,点B不不在平面在平面内,记作内,记作B ;(2)直线)直线l在平面在平面内,记作内,记作l ,直线,直线m不在平面不在平面内,记作内,记作m ;(3)平面)平面与平面与平面相交于直线相交于直线l,记作,记作=l;(4)直线)直线l和和m相交于点相交于点A,记作,记作lm=A,简记为简记为lm=A.19例例1如图,平面如图,平面ABEF记作记作,平面,平面ABCD记作记作,根据图形填写:,根据图形填写:(1)A,B ,E , C ,D ;(2)A,B ,C , D ,E ,F ;(3)= ;AB20例例2如图中如图中ABC,若,若AB、BC 在平面在平面内,判断内,
10、判断AC 是否在平面是否在平面内?内? C B A解:解: AB在平面在平面内,内, A点一定在平点一定在平面面内,又内,又BC在平面在平面内,内, C点一定在点一定在平面平面内,内, ( 点点A、点、点C都在平面都在平面内,内,) 直线直线AC 在平面在平面内(公理内(公理1). 21例例3(1)不共面的四点可以确定几个)不共面的四点可以确定几个平面?平面?(2)三条直线两两平行,但不共面,它)三条直线两两平行,但不共面,它们可以确定几个平面?们可以确定几个平面?(3)共点的三条直线可以确定几个平面?)共点的三条直线可以确定几个平面?4个个3个个1个或个或3个个22例例4如图,在正方体如图,
11、在正方体ABCDA1B1C1D1中,中,E、F分别为分别为CC1和和AA1上的中点,画出平上的中点,画出平面面BED1F与平面与平面ABCD的交线的交线.FEABCC1B1D1A1D解:在平面解:在平面AA1D1D 内,内,延长延长D1F, D1F与与DA不平行,因此不平行,因此D1F与与DA 必相交于一点,设为必相交于一点,设为P, P23FEABCC1B1D1A1DP又又D1F 平面平面BED1F,P在平面在平面BED1F内内. 则则PD1F,PDA ,AD 平面平面ABCD,P平面平面ABCD, 又又B为平面为平面ABCD与平与平面面BED1F的公共点,的公共点,连结连结PB,PB 即为即为平面平面BED1F 与平面与平面ABCD的交线的交线. 24 P F E A B C C 1 B 1 D 1 A 1 D25例例5. 如图所示,已知如图所示,已知ABC的三个顶点都的三个顶点都不在平面不在平面内,它的三边内,它的三边AB、BC、AC延长延长线后分别交平面线后分别交平面于点于点P、Q、R,求证:点求证:点P、Q、R在同一条直线上在同一条直线上.证明:由已知证明:由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学毕业家长寄语及感言汇编
- 机电设备安装与调试技术要点
- 五年级英语期中复习模拟试题
- 资产评估实践题目解析与解答
- 连锁餐饮品牌营销策划与执行方案
- 企业安全生产隐患排查操作指南
- 高一数学重点知识点讲解与习题集
- 高考化学热力学专项练习及详解
- 小学语文字词积累与运用练习册
- 消化内镜影像处理软件应用教程
- 小儿先天性心脏病护理常规
- 2025-2030中国饲用微生态制剂行业发展动态及未来前景展望报告
- 工程围墙销售方案(3篇)
- 危急值报告管理课件
- GB/T 45683-2025产品几何技术规范(GPS)几何公差一般几何规范和一般尺寸规范
- JG/T 9-1999钢椼架检验及验收标准
- 外贸公司简介课件
- 2023产品质量监督抽查工作规范
- 法务合同协议模板下载
- 子宫内膜异位症长期管理
- 数控脉宽脉冲信号发生器
评论
0/150
提交评论