![第五单元《数学广角-鸽巢问题》教案[1]_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-10/21/9dd0ba0d-db6e-4d16-ba35-7c8f0fce07de/9dd0ba0d-db6e-4d16-ba35-7c8f0fce07de1.gif)
![第五单元《数学广角-鸽巢问题》教案[1]_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-10/21/9dd0ba0d-db6e-4d16-ba35-7c8f0fce07de/9dd0ba0d-db6e-4d16-ba35-7c8f0fce07de2.gif)
![第五单元《数学广角-鸽巢问题》教案[1]_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-10/21/9dd0ba0d-db6e-4d16-ba35-7c8f0fce07de/9dd0ba0d-db6e-4d16-ba35-7c8f0fce07de3.gif)
![第五单元《数学广角-鸽巢问题》教案[1]_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-10/21/9dd0ba0d-db6e-4d16-ba35-7c8f0fce07de/9dd0ba0d-db6e-4d16-ba35-7c8f0fce07de4.gif)
![第五单元《数学广角-鸽巢问题》教案[1]_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-10/21/9dd0ba0d-db6e-4d16-ba35-7c8f0fce07de/9dd0ba0d-db6e-4d16-ba35-7c8f0fce07de5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五单元 数学广角鸽巢问题教学目标:知识与技能:(1)引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。情感态度与价值观:(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。(2)理解知识的产生过程,受到历史唯物注意的教育。(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。教学重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。教学难点:理解“鸽巢原理”,找出
2、”鸽巢问题“解决的窍门进行反复推理。教学课时:三课时第一课时 鸽巢问题教学内容:教材第68-70页例1、例2,及“做一做”的第1题,及第71页练习十三的1-2题。教学目标:知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。教学重点:引导学生把具体问题转化成“鸽巢问题”。教学难点:找出“鸽巢问题”解决的窍门进行反复推理。教学准备:课件。教学过程
3、:一、情境导入:任意的13人中,至少有几个人的出生月份相同?学生独立思考, 在分组讨论。解决这一问题的理论依据就是“鸽巢问题”,今天来研究这一问题。2、 探究新知1、教学例1.(课件出示例题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律理解关键词的含义探究证明认识“鸽巢问题”的学习过程来解决问题。(1) 、操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。(2) 、理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有
4、1个笔筒里的铅笔数大于或等于2支。(3) 、探究证明。方法一:用“枚举法”证明。方法二:用“分解法”证明。把4分解成3个数。由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。方法三:用“假设法”证明。通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。(4) 认识“鸽巢问题” 、像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有
5、1个笼子里至少有2只鸽子。这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。、如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。(5) 、归纳总结:鸽巢原理(一):如果把m个物体任意放进n个抽屉里(mn,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。 2、教学例2(课件出示例题2
6、情境图)思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢?(二)如果有8本书会怎样呢?10本书呢?学生通过“探究证明得出结论”的学习过程来解决问题(一)。(1) 、探究证明。方法一:用数的分解法证明。把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况:由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。方法二:用假设法证明。把7本书平均分成3份,73=2(本).1(本),若每个抽屉放2本,则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。(2) 、
7、得出结论。通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。学生通过“假设分析法归纳总结”的学习过程来解决问题(二)。(1) 用假设法分析。、83=2(本).2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。、103=3(本).1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。(2) 、归纳总结: 综合上面两种情况,要把a本书放进3个抽屉里,如果a3=b(本).1(本)或a3=b(本).2(本),那么一定有1个抽屉里至少放进(b+1)本
8、书。 鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。三、巩固练习1、完成教材第70页的“做一做”第1题。学生独立思考解答问题,集体交流、纠正。2、完成教材第71页练习十三的1-2题。学生独立思考解答问题,集体交流、纠正。四、课堂检测:1、 把98个苹果放到10个抽屉中, 无论怎么放, 我们一定能找到一个含苹果最多的抽屉,它里面至少含有 个苹果。2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少含有 只鸽子。五、全课小结:今天我们学习了什么内容?(把个以上的苹果放
9、到个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有两个苹果。)六、板书设计:鸽巢问题(4,0,0), (0,1,3), (2,2,0), (2,1,1)只要放进的铅笔数比笔筒的数量多1,总有一个笔筒至少放进2支铅笔。73=2(本).1(本) 2+1=3把m个物体任意放进n个抽屉里(mn,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。第二课时 “鸽巢问题”的应用教学内容:教材第70-71页例3,及“做一做”的第2题,及第71页练习十三的3-4题。教学
10、目标:知识与技能:在了解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。教学重点:引导学生把具体问题转化成“鸽巢问题”。教学难点:找出“鸽巢问题”中的“鸽巢”是什么,“鸽巢”有几个,在利用“鸽巢原理”进行反向推理。教学准备:课件。教学过程:一、复习旧知:什么是“鸽巢问题”?怎样用“鸽巢问题”解决简单的实际问题二、探究新知1、 教学例3(课件出示例3的情境图). 出示思考的
11、问题:盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,少要摸出几个球?学生通过“猜测验证分析推理”的学习过程解决问题。(1) 猜测验证。 猜测1:只摸2个球 只要举出一个反例就可以推翻这种猜测。 就能保证这2个球 验 证 如:这两个球正好是一红一蓝时就不能 同色。 满足条件。 猜测2:摸出5个球, 把红、蓝两种颜色看作两个“鸽巢”,因为 肯定有2个球是同 验 证 52=2.1,所以摸出5个球时,至少有3 色的。 个球是同色的,因此摸出5个球是没必要的。 猜测1:摸出3个球, 把红、蓝两种颜色看作两个“鸽巢”,因为 至少有2个球是同 验 证 32=1.1,所以摸出3个球时,至少
12、有3 色的。 2个是同色的。 综上所述,摸出3个球,至少有2个球是同色的。 (2)分析推理。根据“鸽巢原理(一)”推断:要保证有一个抽屉至少有2个球,分的无图个数失少要比抽屉数多1。现在把“颜色种数”看作“抽屉数”,结论就变成了“要保证摸出2个同色的球,摸出的球的个数至少要比颜色种数多1”。因此,要从两种颜色的球中保证摸出2个同色的,至少要摸出3个球。2、 趁热打铁:箱子里有足够多的5种不同颜色的球,最少取出多少个球才能保证其中一定有2个颜色一样的球?学生独立思考解决问题,集体交流。3、 归纳总结:运用“鸽巢原理”解决问题的思路和方法:(1) 分析题意;(2) 把实际问题转化成“鸽巢问题”,弄
13、清“鸽巢”和分放的“鸽子”。(3) 根据“鸽巢原理”推理并解决问题。 三、巩固练习1、完成教材第70页的“做一做”的第2题。(学生独立解答,集体交流。)2、完成教材第71页的练习十三的第3-4题。(学生独立解答,集体交流。)3、课外拓展延伸题:一个布袋里有红色、黑色、蓝色的袜子各8只。每次从布袋里最少要拿出多少只可以保证其中有2双颜色不同的袜子?(袜子不分左右)四、课堂检测:1、六(1)班有49名学生。数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。”请问王老师说的对吗?为什么?2、从这100个数中任意挑选出51个数来,证明在这5
14、1个数中,一定:(1)有2个数互质; (2)有两个数的差为50;五、课堂总结: 通过这节课的学习,你有哪些收获?六、板书设计:鸽巢问题鸽巢数要保证摸出2个同色的球,摸出的球数的数量至少要比颜色种数多1。第3课时 “鸽巢原理”练习课教学内容:教材71页练习十三的5、6题,及相关的练习题。教学目标:知识与技能:进一步熟知“鸽巢原理”的含义,会用“鸽巢原理”熟练解决简单的实际问题。过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。教学重点:应用
15、“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。教学难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。教学过程:一、指导练习(一)基础练习题1、填一填: (1)光明小学六年级有30名学生是二月份(按28天计算)出生的,六年级至少有( )名学生的生日是在二月份的同一天。 (2)有3个同学一起练习投篮,如果他们一共投进16个球,那么一定有1个同学至少投进了( )个球。(3)把6只鸡放进5个鸡笼,至少有( )只鸡要放进同1个鸡笼里。(4)某班有个小书架,40个同学可以任意借阅,小书架上至少要有( )本书,才可以保证至少有1个同学能借到2本或2本以上的书。学生独立思考解答
16、,集体交流纠正。2、 解决问题。(1)(易错题)六(1)班有50名同学,至少有多少名同学是同一个月出生的?(2)书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书。一次至少要拿出多少本书?(3)把16支铅笔最多放入几个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6支?(二)拓展延伸题1、把27个球最多放在几个盒子里,可以保证至少有1个盒子里有7个球?教师引导学生分析:盒子数看作抽屉数,如果要使其中1个抽屉里至少有7个球,那么球的个数至少要比抽屉数的(7-1)倍多1个,而(27-1)(7-1)=4.2,因此最多放进4个盒子里,可以保证至少有1个盒子里有7个球。教师引导学生规范
17、解答:2、 一个袋子里装有红、黄、蓝袜子各5只,一次至少取出多少只可以保证每种颜色至少有1只?教师引导学生分析:假设先取5只,全是红的,不符合题意,要继续去;假设再取5只,5只有全是黄的,这时再取一只一定是蓝色的,这样取52+1=11(只)可以保证每种颜色至少有1只。教师引导学生规范解答:3、六(2)班的同学参加一次数学考试,满分为100分,全班最低分是75。已知每人得分都是整数,并且班上至少有3人的得分相同。六(2)班至少有多少名同学?教师引导学生分析:因为最高分是100分,最低分是75分,所以学生可能得到的不同分数有100-745+1=26(种)。教师引导学生规范解答:二、巩固练习完成教材第71页练习十三的5、6题。(学生独立思
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公路水运工程试验检测师法规与技术标准试题库及答案
- (2025年)检验检测机构授权签字人考核试题(附答案)
- 安丘市2024-2025学年八年级下学期语文月考模拟试卷
- 2017年1月国开电大法律事务专科《行政法与行政诉讼法》期末纸质考试试题及答案
- 2025 年小升初深圳市初一新生分班考试英语试卷(带答案解析)-(人教版)
- 2025 年小升初沧州市初一新生分班考试数学试卷(带答案解析)-(苏教版)
- 中山市高二年级2025-度第二学期期末统一考试地理模拟试卷(六)
- 社区网格化课件
- 社区消防知识培训课件简报
- 社区消防知识培训课件及演练
- 第八章-高级土壤化学之土壤的氧化还原化学
- 市政工程方案设计
- 肠息肉切除术后的护理
- 行政法与行政诉讼法案例教程 课件全套 殷兴东 第1-8章 行政法的基本原理-行政赔偿
- 高中新班主任培训
- 新媒体运营与推广- 课程标准、授课计划
- 中式烹调技艺高职全套教学课件
- 陕西华山的险峻之旅
- 苏教版分式章起始课-展示课件
- 《茶文化与茶健康》第一讲
- GB 24541-2022手部防护机械危害防护手套
评论
0/150
提交评论