




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、单选题1晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5分钟后也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论:两人同行过程中的速度为200米/分;m的值是15,n的值是3000;晓琳开始返回时与爸爸相距1800米;运动18分钟或30分钟时,两人相距900米.其中正确结论的个数是( )A1个 B2个 C3个 D4个【答案】C设爸爸返回的解析式为y2=kx+b,把(15,3000)(45,0)代入得 ,解得 y2=-100x+4500当0x20时,y1=20
2、0xy1-y2=900200x-(-100x+4500)=900x=18当20x45时,y1=ax+b,将(20,4000)(45,0)代入得 , y1=-160x+7200y1-y2=900 , (-160x+7200)-(-100x+4500)=900,x=30正确故选:C【关键点拨】本题考查了一次函数的应用,明确横纵坐标的实际意义是解题得关键.2如图,在平面直角坐标系中,直线l1:y=x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k0)与直线l1在第一象限交于点C若BOC=BCO,则k的值为()A B C D2【答案】B得:k,即k故选B【关键点拨】本题考查了两直线相交或平行
3、问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解3某通讯公司就上宽带网推出A,B,C三种月收费方式这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是A每月上网时间不足25h时,选择A方式最省钱 B每月上网费用为60元时,B方式可上网的时间比A方式多C每月上网时间为35h时,选择B方式最省钱 D每月上网时间超过70h时,选择C方式最省钱【答案】D将(50,50)、(55,65)代入yB=mx+n,得: ,解得:,yB=3x-100(x50),当x=70时,yB=3x-100=110120,结论D错误故选D【关键点拨
4、】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键4如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、An(n,0),作垂直于x轴的直线交l于点B1、B2、Bn,将OA1B1,四边形A1A2B2B1、四边形An1AnBnBn1的面积依次记为S1、S2、Sn,则Sn=()An2 B2n+1C2n D2n1【答案】D5如图,点A的坐标为(-1,0),点B在直线上运动,当线段AB最短时,点B的坐标为( )A(0,0) B(,) C(,) D(,)【答案】B【关键点拨】本题考
5、查了一次函数的性质,坐标与图形性质,垂线段最短,等腰直角三角形等知识,熟练掌握垂线段最短是解决本题的关键.6如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+30的解集是()Ax2 Bx2 Cx2 Dx2【答案】B【关键点拨】本题考查了一次函数的图象与性质和一元一次不等式及其解法,解题的关键是掌握一次函数与一元一次不等式之间的内在联系.7如图,在平面直角坐标系中,的顶点在第一象限,点、的坐标分别为、,直线交轴于点,若与关于点成中心对称,则点的坐标为( )A B C D【答案】A【解析】点B,C的坐标分别为(2,1),(6,1),BAC=90,AB=AC,ABC是等腰直角三角形,A(
6、4,3),设直线AB解析式为y=kx+b,则,解得,直线AB解析式为y=x1,令x=0,则y=1,P(0,1),又点A与点A关于点P成中心对称,点P为AA的中点,设A(m,n),则=0,=1,m=4,n=5,A(4,5),故选:A【关键点拨】本题考查了中心对称和等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.8春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通
7、风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A经过集中喷洒药物,室内空气中的含药量最高达到B室内空气中的含药量不低于的持续时间达到了C当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内【答案】C【关键点拨】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.9已知一系列直线 分别与直线相交于一系列点,设的横坐标为,则对于式子 ,下列一定正确的是( )A大于1 B大于
8、0 C小于1 D小于0【答案】B【解析】由题意xi=-,xj=-,式子0,故选:B【关键点拨】本题考查一次函数图象上点的坐标特征,待定系数法等知识,解题的关键是灵活运用所学知识解决问题10如图1,点F从菱形ABCD的顶点A出发,沿ADB以1cm/s的速度匀速运动到点B,图2是点F运动时,FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A B2 C D2【答案】CBE=,四边形ABCD是菱形,EC=a-1,DC=a,RtDEC中,a2=22+(a-1)2.解得a=.故选:C【关键点拨】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系1
9、1如图,直线与x轴、y轴分别交于A、B两点,点P是以C(1,0)为圆心,1为半径的圆上一点,连接PA,PB,则PAB面积的最小值是()A5 B10 C15 D20【答案】A【解析】作CHAB于H交O于E、F连接BC【关键点拨】本题考查了一次函数图象上的点的坐标特征、一次函数的性质、直线与圆的位置关系等知识,解题的关键是学会添加常用辅助线,利用直线与圆的位置关系解决问题,属于中考填空题中的压轴题12如图,正方形ABCD中,E为CD的中点,AE的垂直平分线分别交AD,BC及AB的延长线于点F,G,H,连接HE,HC,OD,连接CO并延长交AD于点M则下列结论中:FG=2AO;ODHE;2OE2=A
10、HDE;GO+BH=HC正确结论的个数有()A2 B3 C4 D5【答案】B同理可得:直线CO的方程为:,可得M点坐标(,2),可得:FG=,AO= =,故FG=2AO,故正确;:由O点坐标,D点坐标(2,2),可得OD的方程:,由H点坐标(0,),E点坐标(2,1),可得HE方程:,由两方程的斜率不相等,可得OD不平行于HE,故错误;由A(0,2),M(,2),H(0,),E(2,1),可得:BH=,EC=1,AM=,MD=,故=,故正确;:由O点坐标,E(2,1),H(0,),D(2,2),可得:,AH=,DE=1,有2OE2=AHDE,故正确;【关键点拨】本题主要考查一次函数与矩形的综合
11、,及点与点之间的距离公式,难度较大,灵活建立直角坐标系是解题的关键.二、填空题13如图,在平面直角坐标系xOy中,有一个由六个边长为1的正方形组成的图案,其中点A,B的坐标分别为(3,5),(6,1)若过原点的直线l将这个图案分成面积相等的两部分,则直线l的函数解析式为_【答案】【解析】【关键点拨】本题考查了中心对称图形的性质、待定系数法求解析式,熟知过中心对称图形对称中心的直线把这个图形分成面积相等的两个图形是解题的关键.14如图,一次函数y=x2与y=2x+m的图象相交于点P(n,4),则关于x的不等式组的解集为_【答案】2x2【解析】一次函数y=x2的图象过点P(n,4),4=n2,解得
12、n=2,P(2,4),又y=x2与x轴的交点是(2,0),关于x的不等式组的解集为故答案为:【关键点拨】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键15如图,直线与两坐标轴分别交于、两点,将线段分成等份,分点分别为,P3,, ,过每个分点作轴的垂线分别交直线于点, ,用,分别表示,的面积,则_.【答案】 【关键点拨】本题考查一次函数的应用,规律型点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积16如图,直线y1=-x+a与y2=bx-4相交于点P,已知点P的坐标为(1,-3),则
13、关于x的不等式-x+abx-4的解集是_.【答案】【关键点拨】本题考查了一次函数与一元一次不等式的关系,解决这类题目的关键是找出两个函数图像的交点坐标,再根据图象的位置确定x的取值范围.17如图,在平面直角坐标系中,函数和的图象分别为直线,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,依次进行下去,则点的横坐标为_【答案】【关键点拨】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律18如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0
14、的解是_【答案】x=2【解析】一次函数y=ax+b的图象与x轴相交于点(2,0),关于x的方程ax+b=0的解是x=2,故答案为:x=2【关键点拨】本题主要考查了一次函数与一元一次方程的关系任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值19规定:x表示不大于x的最大整数,(x)表示不小于x的最小整数,x)表示最接近x的整数(xn+0.5,n为整数),例如:2.3=2,(2.3)=3,2.3)=2则下列说法正确的是_(写出所有正确
15、说法的序号)当x=1.7时,x+(x)+x)=6;当x=2.1时,x+(x)+x)=7;方程4x+3(x)+x)=11的解为1x1.5;当1x1时,函数y=x+(x)+x的图象与正比例函数y=4x的图象有两个交点【答案】1x1时,当1x0.5时,y=x+(x)+x=1+0+x=x1,当0.5x0时,y=x+(x)+x=1+0+x=x1,当x=0时,y=x+(x)+x=0+0+0=0,当0x0.5时,y=x+(x)+x=0+1+x=x+1,当0.5x1时,y=x+(x)+x=0+1+x=x+1,y=4x,则x1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,当1x1时,函数y
16、=x+(x)+x的图象与正比例函数y=4x的图象有三个交点,故错误,故答案为:20一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计)当妈妈刚回到家时,小玲离学校的距离为_米【答案】200【关键点拨】本题
17、考查了一次函数的图象的性质的运用,路程=速度时间之间的关系的运用,分别求小玲和妈妈的速度是关键,解答时熟悉并理解函数的图象21已知直线l1:y=(k1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2=_;(2)当k=2、3、4,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,S2018,则S2+S3+S4+S2018=_【答案】 1 【解析】当y=0时,有(k-1)x+k+1=0,解得:x=-1-,直线l1与x轴的交点坐标为(-1-,0),同理,可得出:直线l2与x轴的交点坐标为(-1-,
18、0),两直线与x轴交点间的距离d=-1-(-1-)=-联立直线l1、l2成方程组,得:,解得:,直线l1、l2的交点坐标为(-1,-2)(1)当k=2时,d=-=1,S2=|-2|d=1故答案为:1【关键点拨】本题考查了一次函数图象上点的坐标特征以及规律型中图形的变化类,利用一次函数图象上点的坐标特征求出两直线与x轴交点间的距离是解题的关键22如图,射线OM在第一象限,且与x轴正半轴的夹角为60,过点D(6,0)作DAOM于点A,作线段 OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB.以AB为边在AOB的外侧作正方形ABCA1,延长A1C交射线OB于点B1,以A1B1为边在A1OB
19、1的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在A2OB2的外侧作正方形A2B2C2A3按此规律进行下去,则正方形A2017B2017C2017A2018的周长为_.【答案】【关键点拨】本题考查规律型问题、解直角三角形、点的坐标等知识,解题的关键是学会探究规律的方法,根据获取的规律解决问题23如图,直线与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则OAE的面积为_【答案】A(,0);OA=,设D(x,) ,E(x,- x+2),延长DE交OA于点F,EF=-x+2,OF=x,在RtOEF中利用勾股定理得:,解得 :x1
20、=0(舍),x2=;EF=1,SAOE=OAEF=2.故答案为:.【关键点拨】 本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k0,且k,b为常数)的图象是一条直线它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b)直线上任意一点的坐标都满足函数关系式y=kx+b也考查了菱形的性质.三、解答题24某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不
21、少于16件,设购进A型丝绸m件求m的取值范围已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件如果50n150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.【答案】(1)一件A型、B型丝绸的进价分别为500元,400元;(2),(2)根据题意得:,的取值范围为:,设销售这批丝绸的利润为,根据题意得:,()当时,时,销售这批丝绸的最大利润;()当时,销售这批丝绸的最大利润;()当时,当时,销售这批丝绸的最大利润综上所述:【关键点拨】本题综合考察了分式方程、不等式组以及一次函数的相关知识在第(2)问中,进一步考查了,如何解决含有字母系数的一
22、次函数最值问题25“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5x2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?【答案】(1)20;(2)乙地离小红家30千米.当x=2.5时,解得y=30,乙地离小红家30千米.【关键点拨】本题考查一次函数的应用,读懂图象信息
23、,掌握待定系数法是解题的关键.26某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示(1)甲车间每天加工零件为_件,图中d值为_(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式(3)甲车间加工多长时间时,两车间加工零件总数为1000件?【答案】80 770 ,解得,y=1
24、30x400(4x9)(3)由题意得:80x+130x400=1000,解得:x=答:甲车间加工天时,两车间加工零件总数为1000件【关键点拨】一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答27如图,已知A(6,0),B(8,5),将线段OA平移至CB,点D在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD(1)求对角线AC的长;(2)设点D的坐标为(x,0),ODC与ABD的面积分别记为S1,S2设S=S1S2,写出S关于x的函数解析式,并探究是否存在点D使S与DBC的面积相等?如果存在,用坐标形式写出点D的位置;如果不存在,说明理由【答案】(
25、1)AC=;(2)点D的坐标为(x,0)(x6)S=S1S2=-()=5x15,当点D在OA的延长线上时,S1=,S2=,S=S1S2=-()=15,由上可得,S=,SDBC=15,点D在OA的延长线上的任意一点都满足条件,点D的坐标为(x,0)(x6)【关键点拨】本题考查一次函数的应用、勾股定理的应用、平移的性质、两点间的距离公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和分类讨论的数学思想解答28某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元(1)求A型空调
26、和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【答案】(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元(2)设购买A型空调a台,则购买B型空调(3
27、0-a)台,解得,10a12,a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;【关键点拨】本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答29“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每
28、台型、型净水器的进价各是多少元;(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元.【解析】(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,m-200=
29、1800答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元【关键点拨】本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式30某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2
30、)所示,请结合图象回答下列问题:(1)甲车间每天加工大米 吨,a= (2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?【答案】(1)20,15;(2)y=35x55;(3)再过1天装满第二节车厢.【解析】(1)由图象可知,第一天甲乙共加工220185=35吨,第二天,乙停止工作,甲单独加工185165=20吨,则乙一天加工3520=15吨,a=15,故答案为:20,15;(2)设y=kx+b,把(2,15),(5,120)代入得,解得:,y=35x55(2x5);【关
31、键点拨】本题为一次函数实际应用问题,应用了待定系数法、分类讨论思想等,解答要注意通过对这两个函数图象实际意义对比分析得到问题答案31已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=x+与x轴、y轴分别交于B、C两点,四边形ABCD为菱形(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为ACD内一点,连接AP、BP,BP与AC交于点G,且APB=60,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若AFE=30,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标【答案】(1)A(,0)(2)49;(3)P(,3)
32、【解析】(1)如图1中,(2)如图2中,连接CE、CFOA=OB,COAB,AC=BC=7,AB=BC=AC,ABC是等边三角形,ACB=60,APB=60,APB=ACB,PAG+APB=AGB=CBG+ACB,PAG=CBG,AE=BF,ACEBCF,CE=CF,ACE=BCF,ECF=ACF+ACE=ACF+BCF=ACB=60,CEF是等边三角形,CFE=60,EF=FC,AFE=30,AFC=AFE+CFE=90,在RtACF中,AF2+CF2=AC2=49,AF2+EF2=49(3)如图3中,延长CE交FA的延长线于H,作PQAB于Q,PKOC于K,在BP设截取BT=PA,连接AT
33、、CT、CF、PCCPEHAE,PCE=H,PCFH,CAP=CBT,AC=BC,ACPBCT,CP=CT,ACP=BCT,PCT=ACB=60,CPT是等边三角形,CT=PT,CPT=CTP=60,CPFH,HFP=CPT=60,APB=60,APF是等边三角形,CFP=AFC-AFP=30,TCF=CTP-TFC=30,TCF=TFC,TF=TC=TP,【关键点拨】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题32某书店现有资金7700元,计划全
34、部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元设书店购进甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接
35、写出书店是按哪种方案进的货及a的值【答案】(1)y=x+18(2)三种购买方案(3)甲种图书6套,乙种图书8套,丙种图书6套,a=10即有三种购买方案:甲、乙、丙三种图书分别为3套,13套,4套,甲、乙、丙三种图书分别为6套,8套,6套,甲、乙、丙三种图书分别为9套,3套,8套,(3)若按方案一:则有13a4a=20,解得a=(不是正整数,不符合题意),若按方案二:则有8a6a=20,解得a=10(符合题意),若按方案三:则有3a8a=20,解得a=4(不是正整数,不符合题意),所以购买方案是:甲种图书6套,乙种图书8套,丙种图书6套,a=10【关键点拨】本题主要考查一次函数与不等式等知识的综
36、合,注意运算的准确性及灵活根据题意进行方案选择.33如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴和y轴分别相交于A、B两点动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN设运动时间为t秒(1)当t=秒时,点Q的坐标是 ;(2)在运动过程中,设正方形PQMN与AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值【答案】(1)(4,0);(2)当0t1时,S =t2;当1t时,S =t2+18t;当t2时,
37、S =3t2+12;(3)OT+PT的最小值为(2)当点Q在原点O时,OQ=6,AP=OQ=3,t=33=1,当0t1时,如图1,令x=0,y=4,B(0,4),OB=4,A(6,0),OA=6,CN=t,S=S正方形PQMNSCDN=(3t)2tt=t2;当1t时,如图2,同的方法得,DN=t,CN=t,S=S矩形OENPSCDN=3t(63t)tt=t2+18t;当t2时,如图3,S=S梯形OBDP=(2t+4)(63t)=3t2+12;(3)如图4,由运动知,P(63t,0),Q(66t,0),M(66t,3t),T是正方形PQMN的对角线交点,T(6t,t)点T是直线y=x+2上的一段线段,(3x6),作出点O关于直线y=x+2的对称点O交此直线于G,过点O作OFx轴,则OF就是OT+PT的最小值,由对称知,OO=2OG,【关键点拨】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T的位置是解本题(3)的难点34如图,在平面直角坐标系中,点F的坐标为(0,10)点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P(1)求直线l1的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司提成策划方案(3篇)
- 推门听课活动方案(3篇)
- 医院食堂人群管理制度
- 室内小房改造方案(3篇)
- 停水设备检修方案(3篇)
- 医院设备故障管理制度
- 建安企业仓储管理制度
- 关于餐厅卫生管理制度
- 物业地面改造方案(3篇)
- 危险岗位应急管理制度
- 独柱墩钢盖梁安装施工要点
- 北京大学国际政治经济学教学大纲
- 跨文化沟通的本质-PPT课件
- 合肥市建设工程消防设计审查、消防验收、备案与抽查文书样式
- 《电气工程基础》熊信银-张步涵-华中科技大学习题答案全解
- 北美连续油管技术的新进展及发展趋势李宗田
- 行政单位会计实习报告(共36页)
- 110千伏变电站工程检测试验项目计划
- 《铁路货物运价规则》
- YD_T 3956-2021 电信网和互联网数据安全评估规范_(高清版)
- 小学三年级下册音乐《春天举行音乐会》人音版(简谱2014秋)(18张)(1)ppt课件
评论
0/150
提交评论