D平面与空间直线PPT学习教案_第1页
D平面与空间直线PPT学习教案_第2页
D平面与空间直线PPT学习教案_第3页
D平面与空间直线PPT学习教案_第4页
D平面与空间直线PPT学习教案_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1D平面与空间直线平面与空间直线kji,1M又) 1,9,14(0)4() 1(9)2(14zyx015914zyx即1M2M3M解解: 取该平面 的法向量为),2,3, 1(),4, 1,2(21MM)3,2,0(3M的平面 的方程. 利用点法式得平面 的方程346231nn3121MMMM机动 目录 上页 下页 返回 结束 第1页/共25页此平面的三点式方程三点式方程也可写成 0132643412zyx0131313121212111zzyyxxzzyyxxzzyyxx一般情况一般情况 : 过三点)3,2, 1(),(kzyxMkkkk的平面方程为机动 目录 上页 下页 返回 结束

2、第2页/共25页此式称为平面的截距式方程截距式方程. ), 0 , 0(, )0 , 0(, )0 , 0 ,(cRbQaP1czbyax时,)0,(cbabcax)( cay)(0bazabcbzaacybcx平面方程为 PozyxRQ分析:利用三点式 按第一行展开得 即0ax yzab0a0c机动 目录 上页 下页 返回 结束 第3页/共25页以上两式相减 , 得平面的点法式方程此方程称为平面的一般平面的一般0DzCyBxA任取一组满足上述方程的数,000zyx则0)()()(000zzCyyBxxA0000DzCyBxA显然方程与此点法式方程等价, )0(222CBA),(CBAn 的平

3、面, 因此方程的图形是法向量为 方程方程.机动 目录 上页 下页 返回 结束 第4页/共25页 当 D = 0 时, A x + B y + C z = 0 表示 通过原点通过原点的平面; 当 A = 0 时, B y + C z + D = 0 的法向量平面平行于 x 轴; A x+C z+D = 0 表示 A x+B y+D = 0 表示 C z + D = 0 表示 A x + D =0 表示 B y + D =0 表示0DCzByAx)0(222CBA平行于 y 轴的平面;平行于 z 轴的平面;平行于 xoy 面 的平面;平行于 yoz 面 的平面;平行于 zox 面 的平面.,),

4、0(iCBn机动 目录 上页 下页 返回 结束 第5页/共25页例例3.用平面的一般式方程导出平面的截距式方程.解解: 因平面通过 x 轴 ,0 DA故设所求平面方程为0zCyB代入已知点) 1,3,4(得BC3化简,得所求平面方程03 zy(P327 例4 , 自己练习) 机动 目录 上页 下页 返回 结束 第6页/共25页设平面1的法向量为 平面2的法向量为则两平面夹角 的余弦为 cos即212121CCBBAA222222CBA212121CBA两平面法向量的夹角(常为锐角)称为两平面的夹角.122n1n),(1111CBAn ),(2222CBAn 2121cosnnnn 机动 目录

5、上页 下页 返回 结束 第7页/共25页221) 1 (0212121CCBBAA21/)2(212121CCBBAA),(:),(:2222211111CBAnCBAn1122121cosnnnn 21nn 21/ nn2n1n2n1n机动 目录 上页 下页 返回 结束 第8页/共25页因此有垂直于平面: x + y + z = 0, 求其方程 .解解: 设所求平面的法向量为,020CBA即CA2的法向量,0CBACCAB)()0(0) 1() 1() 1(2CzCyCxC约去C , 得0) 1() 1() 1(2zyx即02zyx0) 1() 1() 1(zCyBxA)1, 1, 1(1M

6、, )1, 1,0(2M和则所求平面故, ),(CBAn方程为 n21MMn且机动 目录 上页 下页 返回 结束 第9页/共25页外一点,求),(0000zyxP0DzCyBxA222101010)()()(CBAzzCyyBxxA222000CBADzCyBxAd0111DzCyBxA解解:设平面法向量为),(1111zyxP在平面上取一点是平面到平面的距离d .0P,则P0 到平面的距离为01PrjPPdnnnPP010P1Pnd, ),(CBAn (点到平面的距离公式)机动 目录 上页 下页 返回 结束 第10页/共25页xyzo0M求内切于平面 x + y + z = 1 与三个坐标面

7、所构成则它位于第一卦限,且2220001111zyx00331xx , 1000zyxRzyx000因此所求球面方程为000zyx633331, ),(0000zyxM四面体的球面方程.从而)(半径R2222)633()633(633)633(zyx机动 目录 上页 下页 返回 结束 第11页/共25页1.平面平面基本方程:一般式点法式截距式0DCzByAx)0(222CBA1czbyax三点式0131313121212111zzyyxxzzyyxxzzyyxx0)()()(000zzCyyBxxA)0(abc机动 目录 上页 下页 返回 结束 第12页/共25页0212121CCBBAA21

8、2121CCBBAA2.平面与平面之间的关系平面平面垂直:平行:夹角公式:2121cosnnnn 021nn021 nn, 0:22222DzCyBxA),(2222CBAn , 0:11111DzCyBxA机动 目录 上页 下页 返回 结束 ),(1111CBAn 第13页/共25页一、空间直线方程一、空间直线方程 二、线面间的位置关系二、线面间的位置关系 机动 目录 上页 下页 返回 结束 空间直线及其方程 第七七章 第14页/共25页xyzo01111DzCyBxA02222DzCyBxA1 2 L因此其一般式方程1. 一般式方程一般式方程 直线可视为两平面交线,(不唯一)机动 目录 上

9、页 下页 返回 结束 第15页/共25页),(0000zyxM故有说明说明: 某些分母为零时, 其分子也理解为零.mxx000yyxx设直线上的动点为 则),(zyxMnyy0pzz0此式称为直线的对称式方程对称式方程(也称为点向式方程点向式方程)直线方程为s已知直线上一点),(0000zyxM),(zyxM例如, 当,0, 0时pnm和它的方向向量 , ),(pnms sMM/0机动 目录 上页 下页 返回 结束 第16页/共25页设得参数式方程 :tpzznyymxx000tmxx0tnyy0tpzz0机动 目录 上页 下页 返回 结束 第17页/共25页解解:先在直线上找一点.04320

10、1 zyxzyx632zyzy再求直线的方向向量2,0zy令 x = 1, 解方程组,得交已知直线的两平面的法向量为是直线上一点 .)2,0, 1(故.s, ) 1, 1, 1 (1n)3, 1,2(2n21ns,ns21nns机动 目录 上页 下页 返回 结束 第18页/共25页故所给直线的对称式方程为参数式方程为tztytx32 41t41x1y32z解题思路解题思路: 先找直线上一点;再找直线的方向向量.)3, 1,4(21nns312111kji机动 目录 上页 下页 返回 结束 第19页/共25页2L1L则两直线夹角 满足21, LL设直线 两直线的夹角指其方向向量间的夹角(通常取锐

11、角)的方向向量分别为212121ppnnmm212121pnm222222pnm),(, ),(22221111pnmspnms2121cosssss 1s2s机动 目录 上页 下页 返回 结束 第20页/共25页特别有特别有:21) 1(LL 21/)2(LL0212121ppnnmm212121ppnnmm21ss 21/ss机动 目录 上页 下页 返回 结束 第21页/共25页解解: 直线直线二直线夹角 的余弦为(参考P332 例2 )13411:1zyxL0202:2zxyxL cos22从而4的方向向量为1L的方向向量为2L) 1,2,2() 1(1)2()4(212221)4(1222) 1()2(2) 1,4, 1 (1s2010112kjis 机动 目录 上页 下页 返回 结束 第22页/共25页当直线与平面垂直时,规定其夹角线所夹锐角 称为直线与平面间的夹角;L当直线与平面不垂直时,设直线 L 的方向向量为 平面 的法向量为则直线与平面夹角 满足.2222222CBApnmpCnBmA直线和它在平面上的投影直),(pnms ),(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论