




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、26.3.4二次函数综合3一选择题(共10小题)1下列函数中,是二次函数的是()ay=8x2+1by=8x+1cd2二次函数y=2x(x3)的二次项系数与一次项系数的和为()a2b2c1d43如果y=(a1)x2ax+6是关于x的二次函数,则a的取值范围是()aa0ba1ca1且a0d无法确定4若函数是二次函数,则m的值一定是()a3b0c3或0d1或25如图,四边形abcd中,bad=acb=90,ab=ad,ac=4bc,设cd的长为x,四边形abcd的面积为y,则y与x之间的函数关系式是()ay=by=cy=dy= 5题 6题6图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(
2、拱桥洞的最高点)离水面2m,水面宽4m如图(2)建立平面直角坐标系,则抛物线的关系式是()ay=2x2by=2x2cy=x2dy=x27进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为()ay=2a(x1)by=2a(1x)cy=a(1x2)dy=a(1x)28喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件设每件商品的售价上涨x元(x正整数),每星期销售该商品的利润为y元,则y与x的函数解析式为()a
3、y=10x2+100x+2000by=10x2+100x+2000cy=10x2+200xdy=10x2100x+20009如图,正方形abcd的边长为1,e、f分别是边bc和cd上的动点(不与正方形的顶点重合),不管e、f怎样动,始终保持aeef设be=x,df=y,则y是x的函数,函数关系式是()ay=x+1by=x1cy=x2x+1dy=x2x1 9题 10题10在一幅长60cm,宽40cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是ycm2,设金色纸边的宽度为xcm2,那么y关于x的函数是()ay=(60+2x)(40+2x) by=(60+x
4、)(40+x)cy=(60+2x)(40+x) dy=(60+x)(40+2x)二填空题(共6小题)11如图,o的半径为2,c1是函数y=x2的图象,c2是函数y=x2的图象,则阴影部分的面积是_ 11题 12题 13题 12已知二次函数y1=ax2+bx+c(a0)与一次函数y2=kx+b(k0)的图象相交于点a(2,4),b(8,2)(如图所示),则能使y1y2成立的x的取值范围是_13如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是_14请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式,y=_15在平面直角坐标系中,点a是抛物线y=a(x3
5、)2+k与y轴的交点,点b是这条抛物线上的另一点,且abx轴,则以ab为边的等边三角形abc的周长为_16已知二次函数y=(x2a)2+(a1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”如图分别是当a=1,a=0,a=1,a=2时二次函数的图象它们的顶点在一条直线上,这条直线的解析式是y=_ 15题 16题 三解答题(共4小题)17已知抛物线y=a(x3)2+2经过点(1,2)(1)求a的值;(2)若点a(m,y1)、b(n,y2)(mn3)都在该抛物线上,试比较y1与y2的大小18若二次函数y=x2图象平移后得到二次函数y=(x2)2+4的图象(1)平移的规律是:先向_(填“
6、左”或“右”)平移_个单位,再向_平移_个单位(2)在所给的坐标系内画出二次函数y=(x2)2+4的示意图19如图,抛物线y=a(x1)2+4与x轴交于点a,b,与y轴交于点c,过点c作cdx轴交抛物线的对称轴于点d,连接bd,已知点a的坐标为(1,0)(1)求该抛物线的解析式;(2)求梯形cobd的面积20如图,抛物线y=a(xh)2+k经过点a(0,1),且顶点坐标为b(1,2),它的对称轴与x轴交于点c(1)求此抛物线的解析式(2)在第一象限内的抛物线上求点p,使得acp是以ac为底的等腰三角形,请求出此时点p的坐标(3)上述点是否是第一象限内此抛物线上与ac距离最远的点?若是,请说明理
7、由;若不是,请求出第一象限内此抛物线上与ac距离最远的点的坐标26.3.4二次函数综合3参考答案与试题解析一选择题(共18小题)1下列函数中,是二次函数的是()ay=8x2+1by=8x+1cd考点:二次函数的定义分析:利用二次函数定义就可以解答解答:解:a、符合二次函数的一般形式,是二次函数,正确;b、是一次函数,错误;c、是反比例函数,错误;d、自变量x在分母中,不是二次函数,错误故选a点评:本题考查二次函数的定义2二次函数y=2x(x3)的二次项系数与一次项系数的和为()a2b2c1d4考点:二次函数的定义分析:首先把二次函数化为一般形式,再进一步求得二次项系数与一次项系数的和解答:解:
8、y=2x(x3)=2x26x所以二次项系数与一次项系数的和=2+(6)=4故选d点评:此题考查了二次函数的一般形式,计算时注意系数的符号3如果y=(a1)x2ax+6是关于x的二次函数,则a的取值范围是()aa0ba1ca1且a0d无法确定考点:二次函数的定义分析:根据二次函数的定义条件列出方程求解则可解答:解:根据二次函数的定义,a10,即a1故选b点评:本题考查二次函数的定义4若函数是二次函数,则m的值一定是()a3b0c3或0d1或2考点:二次函数的定义专题:探究型分析:根据反二次函数的性质列出关于m的一元二次方程,求出m的值即可解答:解:此函数是二次函数,解得m=0故选b点评:本题考查
9、的是二次函数的定义,即一般地,形如y=ax2+bx+c(a、b、c是常数,a0)的函数,叫做二次函数5如图,四边形abcd中,bad=acb=90,ab=ad,ac=4bc,设cd的长为x,四边形abcd的面积为y,则y与x之间的函数关系式是()ay=by=cy=dy=考点:根据实际问题列二次函数关系式专题:压轴题分析:四边形abcd图形不规则,根据已知条件,将abc绕a点逆时针旋转90到ade的位置,求四边形abcd的面积问题转化为求梯形acde的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底de,下底ac,高df分别用含x的式子表示,可表示四边形abcd的面积解答:解:作
10、aeac,deae,两线交于e点,作dfac垂足为f点,bad=cae=90,即bac+cad=cad+daebac=dae又ab=ad,acb=e=90abcade(aas)bc=de,ac=ae,设bc=a,则de=a,df=ae=ac=4bc=4a,cf=acaf=acde=3a,在rtcdf中,由勾股定理得,cf2+df2=cd2,即(3a)2+(4a)2=x2,解得:a=,y=s四边形abcd=s梯形acde=(de+ac)df=(a+4a)4a=10a2=x2故选c点评:本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用6图(
11、1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m如图(2)建立平面直角坐标系,则抛物线的关系式是()ay=2x2by=2x2cy=x2dy=x2考点:根据实际问题列二次函数关系式3197700专题:压轴题分析:由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解解答:解:设此函数解析式为:y=ax2,a0;那么(2,2)应在此函数解析式上则2=4a即得a=,那么y=x2故选c点评:根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点7进入夏季后,某电器商场为减少库存,
12、对电热取暖器连续进行两次降价若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为()ay=2a(x1)by=2a(1x)cy=a(1x2)dy=a(1x)2考点:根据实际问题列二次函数关系式分析:原价为a,第一次降价后的价格是a(1x),第二次降价是在第一次降价后的价格的基础上降价的,为a(1x)(1x)=a(1x)2解答:解:由题意第二次降价后的价格是a(1x)2则函数解析式是y=a(1x)2故选d点评:本题需注意第二次降价是在第一次降价后的价格的基础上降价的8喜迎圣诞,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商
13、品的售价每上涨1元,则每星期就会少卖出10件设每件商品的售价上涨x元(x正整数),每星期销售该商品的利润为y元,则y与x的函数解析式为()ay=10x2+100x+2000by=10x2+100x+2000cy=10x2+200xdy=10x2100x+2000考点:根据实际问题列二次函数关系式分析:根据题意,得出每件商品的利润以及商品总的销量,即可得出y与x的函数关系式解答:解:设每件商品的售价上涨x元(x为正整数),则每件商品的利润为:(6050+x)元,总销量为:(20010x)件,商品利润为:y=(6050+x)(20010x),=(10+x)(20010x),=10x2+100x+2
14、000故选:a点评:此题主要考查了根据实际问题咧二次函数解析式,根据每天的利润=一件的利润销售量,建立函数关系式,借助二次函数解决实际问题是解题关键9如图,正方形abcd的边长为1,e、f分别是边bc和cd上的动点(不与正方形的顶点重合),不管e、f怎样动,始终保持aeef设be=x,df=y,则y是x的函数,函数关系式是()ay=x+1by=x1cy=x2x+1dy=x2x1考点:根据实际问题列二次函数关系式专题:动点型分析:易证abeecf,根据相似三角形对应边的比相等即可求解解答:解:bae和efc都是aeb的余角bae=fecabeecf那么ab:ec=be:cf,ab=1,be=x,
15、ec=1x,cf=1yabcf=ecbe,即1(1y)=(1x)x化简得:y=x2x+1故选c点评:本题结合了正方形和相似三角形的性质考查了二次函数关系式根据条件得出形似三角形,用未知数表示出相关线段是解题的关键10在一幅长60cm,宽40cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是ycm2,设金色纸边的宽度为xcm2,那么y关于x的函数是()ay=(60+2x)(40+2x)by=(60+x)(40+x)cy=(60+2x)(40+x)dy=(60+x)(40+2x)考点:根据实际问题列二次函数关系式分析:挂图的面积=长宽=(60+2x)(40+
16、2x)解答:解:长是:60+2x,宽是:40+2x,由矩形的面积公式得则y=(60+2x)(40+2x)故选a点评:根据题意,找到所求量的等量关系是解决问题的关键本题需注意长和宽的求法二填空题(共6小题)11如图,o的半径为2,c1是函数y=x2的图象,c2是函数y=x2的图象,则阴影部分的面积是2考点:二次函数的图象专题:压轴题分析:不规则图形面积通过对称转化为可求的图形面积解答:解:由图形观察可知,把x轴上边的阴影部分的面积对称到下边就得到一个半圆阴影面积,则阴影部分的面积s=2点评:此题主要考查了学生的观察图形与拼图的能力12已知二次函数y1=ax2+bx+c(a0)与一次函数y2=kx
17、+b(k0)的图象相交于点a(2,4),b(8,2)(如图所示),则能使y1y2成立的x的取值范围是x2或x8考点:二次函数的图象;一次函数的图象分析:先观察图象确定抛物线y1=ax2+bx+c和一次函数y2=kx+b(k0)的交点的横坐标,即可求出y1y2时,x的取值范围解答:解:由图形可以看出:抛物线y1=ax2+bx+c和一次函数y2=kx+b(k0)的交点横坐标分别为2,8,当y1y2时,x的取值范围正好在两交点之外,即x2或x8点评:此类题可用数形结合的思想进行解答,这也是速解习题常用的方法13如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是(1,0
18、)考点:二次函数的图象专题:压轴题分析:由二次函数y=a(x+1)2+2可知对称轴x=1,从图象上看出与x轴左侧交点为(3,0),利用二次函数的对称性可知该图在对称轴右侧与x轴交点坐标解答:解:由y=a(x+1)2+2可知对称轴x=1,根据对称性,图象在对称轴左侧与x轴交点为(3,0),所以该图在对称轴右侧与x轴交点的坐标是(1,0)点评:要求熟悉二次函数图象的对称性,能从图象和解析式中分析得出对称轴和关于对称轴对称的点,并利用对称性求得另一个点14请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式,y=x2+1(答案不唯一)考点:二次函数的性质专题:开放型分析:根据二次函数的性质
19、,开口向上,要求a值大于0即可解答:解:抛物线y=x2+1开口向上,且与y轴的交点为(0,1)故答案为:x2+1(答案不唯一)点评:本题考查了二次函数的性质,开放型题目,答案不唯一,所写抛物线的a值必须大于015在平面直角坐标系中,点a是抛物线y=a(x3)2+k与y轴的交点,点b是这条抛物线上的另一点,且abx轴,则以ab为边的等边三角形abc的周长为18考点:二次函数的性质;等边三角形的性质专题:压轴题分析:根据抛物线解析式求出对称轴为x=3,再根据抛物线的对称性求出ab的长度,然后根据等边三角形三条边都相等列式求解即可解答:解:抛物线y=a(x3)2+k的对称轴为x=3,且abx轴,ab
20、=23=6,等边abc的周长=36=18故答案为:18点评:本题考查了二次函数的性质,等边三角形的周长计算,熟练掌握抛物线的对称轴与两个对称点之间的关系是解题的关键16已知二次函数y=(x2a)2+(a1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”如图分别是当a=1,a=0,a=1,a=2时二次函数的图象它们的顶点在一条直线上,这条直线的解析式是y=考点:二次函数的性质专题:压轴题分析:已知抛物线的顶点式,写出顶点坐标,用x、y代表顶点的横坐标、纵坐标,消去a得出x、y的关系式解答:解:由已知得抛物线顶点坐标为(2a,a1),设x=2a,y=a1,2,消去a得,x2y=2,即y
21、=x1点评:本题考查了根据顶点式求顶点坐标的方法,消元的思想三解答题(共5小题)17已知抛物线y=a(x3)2+2经过点(1,2)(1)求a的值;(2)若点a(m,y1)、b(n,y2)(mn3)都在该抛物线上,试比较y1与y2的大小考点:二次函数图象上点的坐标特征;二次函数图象与几何变换分析:(1)将点(1,2)代入y=a(x3)2+2,运用待定系数法即可求出a的值;(2)先求得抛物线的对称轴为x=3,再判断a(m,y1)、b(n,y2)(mn3)在对称轴左侧,从而判断出y1与y2的大小关系解答:解:(1)抛物线y=a(x3)2+2经过点(1,2),2=a(13)2+2,解得a=1;(2)函
22、数y=(x3)2+2的对称轴为x=3,a(m,y1)、b(n,y2)(mn3)在对称轴左侧,又抛物线开口向下,对称轴左侧y随x的增大而增大,mn3,y1y2点评:此题主要考查了二次函数的性质,二次函数图象上点的特征,利用已知解析式得出对称轴进而利用二次函数增减性得出是解题关键18若二次函数y=x2图象平移后得到二次函数y=(x2)2+4的图象(1)平移的规律是:先向右(填“左”或“右”)平移2个单位,再向上平移4个单位(2)在所给的坐标系内画出二次函数y=(x2)2+4的示意图考点:二次函数图象与几何变换;二次函数的图象分析:画抛物线,应抓住顶点与y轴x轴的交点等关键点来画解答:解:(1)原抛
23、物线的顶点坐标为(0,0),新抛物线的顶点坐标为(2,4),说明新抛物线向右移动了2个单位,向上移动了4个单位(2)抓住顶点(2,4),与y轴(0,0),x轴的交点(4,0)(0,0)等关键点来画(4分)点评:讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可19如图,抛物线y=a(x1)2+4与x轴交于点a,b,与y轴交于点c,过点c作cdx轴交抛物线的对称轴于点d,连接bd,已知点a的坐标为(1,0)(1)求该抛物线的解析式;(2)求梯形cobd的面积考点:待定系数法求二次函数解析式;二次函数的性质;抛物线与x轴的交点专题:计算题分析:(1)将a坐标代入抛物线解析式,求出
24、a的值,即可确定出解析式;(2)抛物线解析式令x=0求出y的值,求出oc的长,根据对称轴求出cd的长,令y=0求出x的值,确定出ob的长,利用梯形面积公式即可求出梯形cobd的面积解答:解:(1)将a(1,0)代入y=a(x1)2+4中,得:0=4a+4,解得:a=1,则抛物线解析式为y=(x1)2+4;(2)对于抛物线解析式,令x=0,得到y=3,即oc=3,抛物线解析式为y=(x1)2+4的对称轴为直线x=1,cd=1,a(1,0),b(3,0),即ob=3,则s梯形ocdb=6点评:此题考查了利用待定系数法求二次函数解析式,二次函数的性质,以及二次函数与x轴的交点,熟练掌握待定系数法是解本题的关键20如图,抛物线y=a(xh)2+k经过点a(0,1),且顶点坐标为b(1,2),它的对称轴与x轴交于点c(1)求此抛物线的解析式(2)在第一象限内的抛物线上求点p,使得acp是以ac为底的等腰三角形,请求出此时点p的坐标(3)上述点是否是第一象限内此抛物线上与ac距离最远的点?若是,请说明理由;若不是,请求出第一象限内此抛物线上与ac距离最远的点的坐标考点:二次函数综合题分析:(1)由抛物线y=a(xh)2+k的顶点坐标是b(1,2)知:h=1,k=2,则y=a(x1)2+2,再把a点坐标代入此解析式即可;(2)易知oac是等腰直角三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地面施工合同中的合同变更条件3篇
- 出口货物订舱常见问题解答3篇
- 建筑工程网络工程师劳动合同模板2篇
- 2025销售年度考核工作个人总结(30篇)
- 销售年终工作总结(13篇)
- 地皮租赁合同3篇
- 参赛者自负责任书3篇
- 供应商价格优惠承诺保证书3篇
- 户口本办理授权委托书样本3篇
- 大数据项目提议规范3篇
- 2025地质勘察合同范本
- 2025年时政政治试题库及答案
- 山东省泰安市2025届高三二轮模拟检测考试政治(泰安二模)(含答案)
- 2025年教师资格证面试结构化模拟题:教师心理健康维护试题集
- 抗帕金森病试题及答案
- 2025-2030中国钢结构行业现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025年河南省中考数学二轮复习压轴题:动态几何问题专练
- 事故隐患内部举报奖励制度
- GB/T 26651-2011耐磨钢铸件
- 项目工作周报模板
- GB4789.2-2022食品安全国家标准 食品微生物学检验 菌落总数测定
评论
0/150
提交评论