




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学:三角形中的常用辅助线典型例题人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还 要刻苦加钻研,找出规律凭经验。全等三角形辅助线找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。三角形中常见辅助线的作法:延长中线构造全等三角形;利用翻折,构造全等三角形;引平行线构造全等三角形;作连线构造等腰三角形。常见辅助线的作法有以下几种:(1)遇
2、到等腰三角形,可作底边上的高,利用“三线合一”的性质解题, 思维模式是全等变换中的“对折”。例1:如图,A ABCg等腰直角三角形,/ BAC=90 , BD平分/ ABC交AC于点D, CE垂直于BD,交BD的延长线于点E。求证:BD=2CE思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用2)解题思路:要求证BD=2CE可用加倍法,延长短边,又因为有B叶分/ABC勺条件,可以和等腰三角形的三线合一定理结合起来。解答过程:证明:延长 BA, CE交于点F,在 ABEF和ABEC中, /1 = /2, BE=BE , /BEF=/BEC=90 ,ABEFABEC,,EF=EC,从而
3、 CF=2CE。又/ 1 + / F=/ 3+/ F=90 ,故/ 1=/ 3。在 A ABD 和 AACF 中,-/ 1 = /3, AB=AC , / BAD= / CAF=90 ,A ABD 仁 AACF,BD=CF ,BD=2CE 。解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应 用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系, 为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化 归的数学思想,它是解决问题的关键。(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构 造全等三角形,利用的思维模式是全等变换中的“旋
4、转”。例2:如图,已知 AABC中,AD是/ BAC的平分线,AD又是BC边上的中线。求证: A ABC是等腰三角形。思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识。2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等 条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC ,可倍长AD得全等三角形,从而问题得证。解答过程:K证明:延长 AD至ij E,使DE=AD ,连接BE。又因为 AD是BC边上的中线,BD=DC又/ BDE= / CDAA BED A CAD,故 EB=AC , / E= / 2,.AD是/
5、 BAC的平分线/ 1 = Z 2,./ 1 = Z E,;AB=EB从而AB=AC即AABC等腰三角形。解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,冉将端点连结,便可得到全等三角形。(3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用 的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性 质定理或逆定理。例 3:已知,如图,AC平分/ BAD CD=CB ABAD 求证:/ B+/ ADC=180 。思路分析:1)题意分析:本题考查角平分线定理的应用。2)解题思路:因为AC是/BAD的平分线,所以可过点 C作/BAD的两边的 垂线,构造直角三角
6、形,通过证明三角形全等解决问题。解答过程:证明:作 cnAB于 E, CF,ADT Fo. AC平分 / BAD .CE=CF在 RtACBffl RtACDF,.CE=CF CB=CD,RtACBE RtACDF. ./B=/ CDF. /CDF它ADC=180 ,. /B+/ ADC=180。解题后的思考:关于角平行线的问题,常用两种辅助线;(4)过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”例4:如图,A ABC中,AB=AC E是AB上一点,F是AC延长线上一点,连 EF交BC于D,若EB=CF求证:DE=DFS思路分析:1)题意分析:
7、本题考查全等三角形常见辅助线的知识:作平行线。2)解题思路:因为DE、DF所在的两个三角形 A DEB与A DFC不可能全等,又知EB=CF , 所以需通过添加辅助线进行相等线段的等量代换:过E作EG/CF,构造中心对称型全等三角形,再利用等腰三角形的性质,使问题得以解决。解答过程:证明:过E作EG/AC交BC于G,贝叱 EGB= ACB又 AB=AC B=/ ACB. B=/ EGB . EGD=DCF .EB=EG=C F /EDBW CDF.ADG摩 A DCF .DE=DF解题后的思考:此题的辅助线还可以有以下几种作法:F-F例 5: ZXABC中,/BAC=60 , / C=40 ,
8、 AP平分/ BAC交 BC于 P, BQ平分/ ABC交 AC于 Q 求证:AB+BP=BQ+AQ0p思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。2)解题思路:本题要证明的是AB+BP=BQ+A势较为复杂,我们可以通 过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。可过O作BC的平行线。得 AD董4AQO得到OD=OQAD=AQ只要再证出BD=O毗可以解答过程:BpC图证明:如图(1),过O作OD/ BC交AB于D, ./ADO=ABC=180 60 40 =80 ,又. / AQO =C+/ QBC=80 , ./ADO=AQO又/ DAO= QAO
9、OA=AO. .AD董 AAQO . OD=OQAD=AQ又OD/ BP, ./PBO= DOB又./ PBO=DBO ./DBO= DOB .BD=O D又/ BPA= C+/ PAC=70 ,/ BOP= OBA+ BAO=70 , ./BOPWBPO .BP=OB .AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ解题后的思考:(1)本题也可以在AB上截取AD=AQ连OD构造全等三角形,即“截长法”(2)本题利用“平行法”的解法也较多,举例如下:如图(2),过O作OD/ BC交AC于D,则4AD堂ABQA而得以解决。AQ如图(3),过。作DEZ/BC交耻于D,交AC于E. !3
10、JAADOAAQOs ABOf AEO从而得以解决口如图(4;,过P作PD/7BQ交AB的延长线于D,刚研口的也屈匚从而 得以解决.如图(5),过P作PD/ BQ交AC于D,则4AB国/XADPA而得以解决小结:通过一题的多种辅助线添加方法, 体会添加辅助线的目的在于构造全 等三角形。而不同的添加方法实际是从不同途径来实现线段的转移的,体会构 造的全等三角形在转移线段中的作用。从变换的观点可以看到,不论是作平行 线还是倍长中线,实质都是对三角形作了一个以中点为旋转中心的旋转变换构 造了全等三角形。(5)截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段 相等,或是将某条线段延长,使之
11、与特定线段相等,再利用三角形全等的有关 性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。例 6:如图甲,AD/ BC 点 E在线段 AB上,/ADE=/CDE / DC=/ ECB 求证:CDADfBC图甲思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。2)解题思路:结论是C&ADfBC,可考虑用“截长补短法”中的“截长”, 即在CD上截取CRCR只要再证DRDA即可,这就转化为证明两线段相等的问 题,从而达到简化问题的目的。解答过程:证明:在CD上截取CRBQ如图乙在尸蔻与中,C= OF.FC匿zBCE(SAS , .-Z2=Z1oX /AD/
12、BQZADGZBC&18O0 , ZDCSZCD&90 , Z2+Z3=90 , Z 1 + Z4=90 , a Z3=Z4o在 4FDE 与ADB,ZDE =DE = DE .FDEEAADE(ASA , . DF=DA. CD=DF+CF, . CD=AE+BC解题后的思考:遇到求证一条线段等于另两条线段之和时, 一般方法是截长 法或补短法:截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另 一条;补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等 于长线段。1)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差 小于第三边,故可想
13、办法将其放在一个三角形中证明。2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连 接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中, 再 运用三角形三边的不等关系证明。小结:三角形图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角形。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。同步练习(答题时间:90分钟)这几道题一定要认真思考啊,都是要添加辅助线的,开动脑筋好好想一想吧!
14、加油!你一 定行!1、已知,如图1,在四边形ABCM, BCAB, AD=DC BD平分/ ABC 求证:/ BAP/ BCD:180 。2、已知,如图 2, /1=/2, P为 BN上一点,且 PDBC于点 D, ABfBC=2BD 求证:/ BAR/ BCP1803、已知,如图 3,在ABC, / C= 2/B, / 1 = / 2。求证:AB=AGCD图34、已知,如图/ 4 E为且0讷两点,求证:AB+ACBD+DE+CEa6、如图5, AD为AABC的中绦 求证;AB+AC2ADb图5品 如图6所示,虹是在&G的中线,BE交小汗R 交卸?于F,且AE=EF 求证:AOBF.、你担鬟生
15、命吗?那么别浪费时间因为时间是娟成生M命的材料一一富兰克林|试题答案1、分析:因为平角等于1800 ,因而应考虑把两个不在一起的角通过全等转 化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形, 可通过“截长法或补短法”来实现。证明:过点D作DE垂直BA的延长线于点E,彳DF,BC于点F,如图1-2X J,瓦评分乙IBC 举=加在冏陋曲用A 8尸中,DE = DFad = cd. .氐AD图Rt ACDFHL),./DAE:/DCF又/BADVDAE180。, /BADVDCE180。,即/ BA/BCD:1802、分析:与1相类似,证两个角的和是180 ,可把它们移到一起,让
16、它们 成为邻补角,即证明/ BCP/EAF;因而此题适用“补短”进行全等三角形的构证明:过点P作PE垂直BA的延长线于点E,如图2-2,/1=上且PD_LB& .PE=FD, 在尺万尸片兄T孙3中,fPS = PD即= BF二月AAP拉田4日耳纹顼.-即二血丫曲3025口.ABmDC=SlXE, /. AS+DC=BPDObAb=A 在用小闻也与M 笛中,fPE = PD Z.PEA = ZPDCAS=DC RtzXAP白 RtACPI(SAS),./PAE:/PCD又./BAR/ PA&1800 o /BAR/BCP=1803、分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长
17、AC 至E使CE=CD或在AB上截取AF=AG证明:方法一(补短法)延长AC到E,使DC=CE,则/ CD匿/ CED如图3-2丁在工班与用ED中,21 = Z2NB = 且AD = AD.RB4工功 IAAS), 必E蜃5t但T E CS=A(J+DC, .AB=ACDC.方法二(截长法)在4B上截取山4G如图3号图3T在 ZL4FD与中, =HC21 = 02AD=AD .AF阴ACD(SAS , .DF=DC / AF氏 Z ACD 又. / AC氏2/B, /FD氏 / B, .FD=FB,.AB=AF+FB=AC+FDAB=AC+GD4、证明:(方法一)将DE两边延长分别交 AR A
18、C于M N,在AM, AM+ANMD+DE+NE在BDIVfr, MB+MDBD在 CEN中,CN+NEQE由+得:AM+AN+MB+MD+CN+NEMD+DE+NE+BD+CE.AB+A8BD+DE+EC(方法二:图4-2)延长BD交AC于F,延长CE交BF于G 在ABR GFCffizXGDW有:AB+AFBD+DG+GFGF+FOGE+CEDG+GEDE由+得:AB+AF+GF+FC+DG+GEBD+DG+GF+GE+CE+DEAB+ACBD+DE+EC5、分析:要证 AB+AO2AD由图想至I: AB+BDADAC+CDAD所以有AB+AC+BD+CDAD+AD=2外边比要证结论多BD
19、+CD故不能直接证出此题,而由2AD想到要构造2AQ即加倍中线,把所要证的线段转移到同一个三角形中去证明,延长AD至&值DE=AD,建拷BE, CEJAD为ABC的中线(已知)/,BD=CD (中线定义:在山CD和AEED中BD = CD (已证)= 4顶角相等)AD=ED (辅助线作法 、. .AC* EBD(SAS . BE=CA(全等三角形对应边相等) 在4ABE中有:AB+BEAE三角形两边之和大于第三边) .AB+AC2A D6、分析:欲证AC=BF只需证AC BF所在两个三角形全等,显然图中没有含 有AC BF的两个全等三角形,而根据题目条件去构造两个含有 AC BF的全等 三角形也并不容易。这时我们想到在同一个三角形中等角对等边,能够把这两 条线段转移到同一个三角形中,只要说明转移到同一个三角形以后的这两条线 段,所对的角相等即可。思路一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版高效节能幕墙施工简易服务合同范本
- 2025年度电视剧编剧聘用合同书
- 2025版文化创意产业融资中介服务合作协议范本
- 2025年保健食品专业市场独家代理购销合同范本
- 2025版金融信贷法律顾问聘请协议
- 2025宾馆客房使用权股份转让与年度客房入住服务及运营保障合同
- 2025版公路运输合同履行监督协议
- 2025年度冷链物流货物采购运输效率提升合同
- 2025年度车间生产设备租赁与承包服务合同
- 2025版全屋定制家具定制与智能家居生活助理升级合同
- 2025年动物(兽医)微生物实验(教学实践)报告
- 离心机验证方案
- 储能电站施工方案新建项目
- 《劳动法常识(第3版)》中职全套教学课件
- 2025年山东水发集团有限公司招聘笔试参考题库含答案解析
- 环境卫生学监测及采样方法介绍(院感培训)
- 餐饮行业油脂废物处理应急预案
- 鞋厂品质管理
- 船舶安全经验分享
- 内部控制基础性评价工作方案(3篇)
- 《制造业成本核算》课件
评论
0/150
提交评论