(完整版)二次函数交点问题,解析式,应用_第1页
(完整版)二次函数交点问题,解析式,应用_第2页
(完整版)二次函数交点问题,解析式,应用_第3页
(完整版)二次函数交点问题,解析式,应用_第4页
(完整版)二次函数交点问题,解析式,应用_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中国最大的中小幼儿课外辅导培训品牌3二次函数的交点问题巧解方法:1、二次函数与x轴、y轴的交点:分别令 y=0,x=0 ;2、二次函数与一次、反比例函数或者与其他函数等的相点:联立两个函数表达式,解方程例1、如图,直线i经过 A (3, 0), B (0, 3)两点,且与二次函数 y=x2+1的图象,在第一象限内相交于 点C.求:(1) AOC勺面积;(2)二次函数图象顶点与点 A、B组成的三角形的面积.例2、已知抛物线y = x2-2x-8 ,(1)求证:该抛物线与 x轴一定有两个交点,并求出这两个交点的坐标。(2)若该抛物线与x轴的两个交点为 A、B,且它的顶点为 P,求4ABP的面积例3

2、、.如图,抛物线y x2 bx C经过直线y x 3与坐标轴的两个交点 A、B,此抛物线与x轴的另个交点为C,抛物线顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使 Sapc: SACD 5 : 4的点P的坐标。例4、已知抛物线 y= x2+x- 5 .22(1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x轴的两个交点为 A、B,求线段AB的长.例5、已知抛物线 y=m攵+ (3 2倒x+m- 2 (廿0)与x轴有两个不同的交点.(1)求m的取值范围;(2)判断点P (1, 1)是否在抛物线上;P三点,(3)当m=1时,求抛物线的顶点 Q及P点关于抛物线的对称轴

3、对称的点P的坐标,并过P、画出抛物线草图.例6.已知二次函数 y=x2 ( m-3) xm的图象是抛物线,如图 2-8-10 .(1)试求m为何值时,抛物线与 x轴的两个交点间的距离是3?(2)当m为何值时,方程 x2- ( m- 3) xm=0的两个根均为负数?(3)设抛物线的顶点为 M与x轴的交点P、Q求当PQ最短日MPQ勺面积.训练题1 .抛物线y=a (x 2) (x+5)与x轴的交点坐标为 .2 .已知抛物线的对称轴是x=-1,它与x轴交点的距离等于 4,它在y轴上的截距是一6,则它的表达式为3 .若a0, b0, c0, 0,那么抛物线 y=ax2+bx+c经过 象限.24 .抛物

4、线y=x 2x + 3的顶点坐标是 .5 .若抛物线 y=2x2 ( nn+ 3) x-m+ 7的对称轴是 x=1,则 m= .6 .抛物线y=2x2+8x + m与x轴只有一个交点,则 m=.27 .已知抛物线y=ax +bx+c的系数有ab+c=0,则这条抛物线经过点 8 .二次函数y=kx2+3x4的图象与x轴有两个交点,则 k的取值范围 9.抛物线y=x22期a x+a2的顶点在直线y=2上,则a的值是10.抛物线y=3x2+5x与两坐标轴交点的个数为(A. 3个B. 2个C. 1个D.无11.如图1所示,函数y=ax2 bx+c的图象过(一1,0),a b的值是(B. 3C. 2D.

5、 - 2A. - 312.已知二次函数bx+c的图象如图一 2 , y=ax +2所示,则下列关系正确的是(bA. 0v 丁12abB . 0v 丁 2 C .2abb1V c 2 D . = =12a2a13.已知二次函数 y=x2+mx+ mt-2.求证:无论 m取何实数,抛物线总与 x轴有两个交点.14,已知二次函数 y=x2 2kx + k2+ k 2.(1)当实数k为何值时,图象经过原点?(2)当实数k在何范围取值时,函数图象的顶点在第四象限内?中国最大的中小幼儿课外辅导培训品牌JUREN函数解析式的求法例一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三

6、元方程组求解;1 .已知二次函数的图象经过A (0, 3)、B (1, 3)、C(1, 1)三点,求该二次函数的解析式。2 .已知抛物线过 A (1, 0)和B (4, 0)两点,交y轴于C点且BO 5,求该二次函数的解析式。例二、已知抛物线的顶点坐标,或抛物线上纵坐标相同的两点和抛物线上另一点时,通常设解析式为顶点 式 y=a(x h) 2+k 求解。3 .已知二次函数的图象的顶点坐标为(1, 6),且经过点(2, 8),求该二次函数的解析式。4 .已知二次函数的图象的顶点坐标为(1, 3),且经过点P (2, 0)点,求二次函数的解析式。例三、已知抛物线与轴的交点的坐标时,通常设解析式为交

7、点式 y=a(x X1)(x X2)。5 .二次函数的图象经过A( 1, 0), B (3, 0),函数有最小值一8,求该二次函数的解析式。6 .抛物线y=2x2+bx+c与x轴交于(2, 0)、( 3,0),则该二次函数的解析式 4骁4中国最大的中小幼儿课外辅导培训品牌例4、一次函数y=2x+3,与二次函数y=ax2+bx+c的图象交于 A (m, 5)和B (3, n)两点,且当x=3时,抛物线取得最值为 9.(1)求二次函数的表达式;(2)在同一坐标系中画出两个函数的图象;(3)从图象上观察,x为何值时,一次函数与二次函数的值都随x的增大而增大.(4)当x为何值时,一次函数值大于二次函数

8、值?例5、某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的 300天内,西红柿市场售价与上市 时间的关系用图中的一条折线表示,西红柿的种植成本与上市时间关系用图中的抛物线表示.(1)写出图中表示的市场售价与时间的函数表达式P=f (t),写出图中表示的种植成本与时间函数表达式Q=g(t);(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本 的单位:元/102kg,时间单位:天)5中国最大的中小幼儿课外辅导培训品牌训练题1 .若抛物线y=ax2+bx+c的顶点坐标为(1,3),且与y=2x2的开口大小相同,方向相反,则该二次函数的解析式。2 .

9、抛物线 y=2x2+bx+c 与 x 轴交于(一1,0)、(3,0),贝U b=, c=.3 .若抛物线与x轴交于(2 , 0)、(3, 0),与y轴交于(0 , 4),则该二次函数的解析式。 4.根据下列条件求关于 x的二次函数的解析式 (1)当x=3时,y最小值=1,且图象过(0, 7) (2)图象过点(0, 2) (1, 2)且对称轴为直线 x=2(3)图象经过(0, 1) (1 , 0) (3, 0)(4)当 x=1 时,y=0; x=0 时,y= 2, x=2 时,y=3(5)抛物线顶点坐标为(一 1, 2)且通过点(1, 10)5.当二次函数图象与 x轴交点的横坐标分别是 x1=

10、-3, x2=1时,且与y轴交点为(0, 2),求这个二次 函数的解析式6.已知二次函数 y=ax2+bx+c的图象与x轴交于(2 , 0)、(4, 0),顶点到x轴的距离为3,求函数的解析6JUREN且入教盲中国最大的中小幼儿课外辅导培训品牌1117 .知二次函数图象顶点坐标(一 3, 2 )且图象过点(2,),求二次函数解析式及图象与 y轴的交点坐 标。8 .已知二次函数图象与x轴交点(2,0) , ( 1,0)与y轴交点是(0, 1)求解析式及顶点坐标。9 .若二次函数y=ax. 11.抛物线y= (k - 2)x +mi- 4kx的对称轴是直线 x=2,且匕的取低点在直线y= 2 x+

11、2上,求函数解析+bx+c经过(1,0)且图象关于直线 x= 2对称,那么图象还必定经过哪一点?10 . y= x2+2(k 1)x+2k k;它的图象经过原点,求解析式与x轴交点。A及顶点C组成白g OAC面积。7中国最大的中小幼儿课外辅导培训品牌10二次函数的应用例1、某商场销售一批名牌衬衫,平均每天可售出20件,每彳盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利 1200元,每件衬衫应降价多少元? (2)每件衬衫降低多少元时,商场平均每天盈利最多?例2、.某商场销售某

12、种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在4070元之间.市场调查发现:若每箱以 50元销售,平均每天可销售 90箱,价格每降低1元,平均每天多销售 3箱,价格 每升高1元,平均每天少销售 3箱.(1)写出平均每天销售(y)箱与每箱售价x(元)之间的函数关系式.(注明范围)(2)求出商场平均每天销售这种牛奶的利润W元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润=售价进价).(3)求出(2)中二次函数图象的顶点坐标,并求当x= 40, 70时W的值.在坐标系中画出函数图象的草图.(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?例3

13、、如图,在一个直角三角形的内部作一个矩形ABCD其中AB和AD分别在两直角边上(1) .设矩形的一边AB=xcm,那么AD边的长度如何表示?(2) .设矩形的面积为ym2,当x取何值时,y的最大值训练题:1、y=3x2-x+2,当x 时,y随x的增大而减小,当 x 时,y有最大值2、周长为60cm的矩形,设其一边为 xcm,则当x=时,矩形面积最大,为 .3、若抛物线的对称轴是 x=3,函数有最小值为 8,且过(0,26 ),则其解析式为 .4、已知边长为4的正方形截去一个角后成为五边形ABCDE如图),其中AF=2, BF=1.试在AB上求一点巳使矩形PNDMI最大面积.5、启明公司生产某种

14、产品,每件产品成本是 3元,售价是4元,年销售量为10万件。为了获得更好的效 益,公司准备拿出一定的资金做广告,卞!据经验,每年投入的广告费是x (万元)时,产品的年销售量将是x77 原销售量的y倍,且y 一x 一。如果把利润看作是销售总额减去成本费和广告费,试写出年利10 1010润S (万元)与广告费 x (万元)的函数关系式,并计算广告是多少万元时,公司获得的年利润最大,最大年利润是多少万元?6、如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体。(墙体的最大可用长度 a=10米)设AB=xm ,长方形ABC曲面积为s m2(1)求S与x的函数关系式;

15、(2)如果要围成面积为45平方米更大的花圃,AB的长是多少米?(3)能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明 理由。7、某通讯器材公司销售一种市场需求较大的新型1 -通讯产品,已知每件产品的进价40元,每年销售该产品的总开支(不含进价)总计 120万元,在销售过程中发现,年销售量 y (万件)与销售单价 x (元)之间存在着如图所示的一次函数关系。(1)求y关于x的函数关系式;(2)试写出该公司销售该种产品的年获利z (万元)关于销售单价 x (元)的函数关系式(年获利 二年销售额-年销售产品总进价-年总开支),当销售单价x为何值时,年获利最大?并求这个最大值;(3)若公司希望这种产品一年的销售获利不低于40万元,借助(2)中函数的图像,请你帮助该公司确定销售单价的范围,在此情况下,要使产品销售量最大你认为销售单价应定为多少元?8、如图所示,在直角梯形 ABC邛,ZA=Z D=90 ,截取A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论