线性规划求最值问题_第1页
线性规划求最值问题_第2页
线性规划求最值问题_第3页
线性规划求最值问题_第4页
线性规划求最值问题_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、线性规划线性规划相关相关问题问题xyo基本概念:基本概念:z=2x+y满足约束条件的解满足约束条件的解(x,y)可行解可行解组成的集合组成的集合使使目标函数目标函数取取得得最值最值的的可行解可行解目标函数目标函数,线性目标函数线性目标函数 1255334xyxyx线性约束条件线性约束条件: 最优解最优解可行解:可行解:可行域可行域: :(阴影部分)(阴影部分)最优解:最优解:线性规划问题:线性规划问题:x-4y+3=0 x-4y+3=03x+5y-25=03x+5y-25=0 x=1x=12x+y=2x+y=1 1xyo可行域可行域a(5,2)b(1,1)即不等式组的解即不等式组的解1.z=a

2、x+by(a,b为常数为常数)可化为可化为 表示表示 与与 平行的一组平行线平行的一组平行线,其中其中 为截距。为截距。bzxbaybzxbay 2. 2. 表示定点表示定点p p(x x0 0,y,y0 0) 与可行域内的动点与可行域内的动点m m(x,yx,y) 连线的连线的斜率斜率00 xxyyz3. 表示定点表示定点q (x0,y0)到可行域内的动点到可行域内的动点n(x,y)的的距离距离 或距离平方。或距离平方。20202020)()()()(yyxxzyyxxz或目标函数的常见类型目标函数的常见类型一、最值模型一、最值模型1azaxbyyxzbb 即表示一组平行线,1azbb其中为

3、斜率,为纵截距,当当b0时时,当直线当直线向上向上平移时平移时,所对应的截距随之所对应的截距随之增大增大;z .-向下向下-减小减小. z .当当b0在可行域内取得最大值的最优解有在可行域内取得最大值的最优解有无数个无数个, 求求m的值的值.(1)若若z=2x+y,求求z的最值的最值.43,13525.1.例例 . .已已知知 、 满满足足xyxyxyx (2)若若z=2x- -y,求求z的最值的最值.maxz2 5212, minz2 113. maxz2 528, minz2 14.42.4. 4 . 052minoakz(3)若若z=x2+ +y2,求求z的最值的最值.(4)若若 求求z

4、 的最值的最值.,yzx 22min()xy22112,22max()xy225229,min2,z max29.z max4.44.4,1oczk43,13525.1.例例 . .已已知知 、 满满足足xyxyxyx (5)求可行域的面积和求可行域的面积和整点个数整点个数.1|2sbc h 13.446.8.2422111043,13525.1.例例 . .已已知知 、 满满足足xyxyxyx (6)z=mx+y, m0在可行域内取得最大值的最优解有在可行域内取得最大值的最优解有无数个无数个,求求m的值的值.ymxz 解:当直线解:当直线y=- -mx+z与直线与直线ac重合时,线段重合时,

5、线段ac上的任上的任意一点都可使目标函数意一点都可使目标函数zymx取得最大值取得最大值.而直线而直线ac的斜率为的斜率为3,5 3,5m 35m 即即. .变式:当且仅当在变式:当且仅当在a(5,2)处有最大值,求)处有最大值,求m的范围的范围222xy求不等式求不等式所表示的平面区域的面积?所表示的平面区域的面积?6 (2,2)2 (2,2)2222 (2,2)2 (2,2)xyxyxyxyxyxyxyxyxy 分分析析:例例2 2 如图,已知如图,已知 abc中的三顶点,中的三顶点,a(2,4), b(-2,3),c(1,0) ,点,点p(x,y)在内部及边界运动在内部及边界运动.z=x+y 在在_ 处有最大值处有最大值_, 在在_ 处有最小值处有最小值 _;z=x-y 在在_ 处处 有最大值有最大值_, 在在_ 处处 有最小值有最小值_;yb(-2,3)c(1,0) 1-5a(2,4)61线段线段bco11-1-1-22323-2a ac cc cb b1 1yxo11-1-1-22323-2a ac cc cb b1 1当堂诊学当堂诊学练习练习1:练习练习2:. 032, 04, 02yxyxyx;15maxz;9516minz ., 57,z203500011( )( )42xyxyxyxyxyz已知实数 、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论