2022届高考数学一轮复习第五章平面向量数系的扩充与复数的引入5.4数系的扩充与复数的引入课件文新人教版_第1页
2022届高考数学一轮复习第五章平面向量数系的扩充与复数的引入5.4数系的扩充与复数的引入课件文新人教版_第2页
2022届高考数学一轮复习第五章平面向量数系的扩充与复数的引入5.4数系的扩充与复数的引入课件文新人教版_第3页
2022届高考数学一轮复习第五章平面向量数系的扩充与复数的引入5.4数系的扩充与复数的引入课件文新人教版_第4页
2022届高考数学一轮复习第五章平面向量数系的扩充与复数的引入5.4数系的扩充与复数的引入课件文新人教版_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、5 5. .4 4数系的扩充与复数的引入数系的扩充与复数的引入 -2-知识梳理双基自测2311.复数的有关概念 a+bi a b a=c,且b=d a=c,且b=-d -3-知识梳理双基自测231x轴 -4-知识梳理双基自测2312.复数的几何意义 -5-知识梳理双基自测2313.复数的运算(1)复数的加、减、乘、除运算法则设z1=a+bi,z2=c+di(a,b,c,dr),则加法:z1+z2=(a+bi)+(c+di)=;减法:z1-z2=(a+bi)-(c+di)=;乘法:z1z2=(a+bi)(c+di)= ;(a+c)+(b+d)i (a-c)+(b-d)i (ac-bd)+(ad+

2、bc)i -6-知识梳理双基自测231(2)复数加法的运算定律:复数的加法满足交换律、结合律,即对任何z1,z2,z3c,有z1+z2=,(z1+z2)+z3=.(3)复数加、减法的几何意义z2+z1 z1+(z2+z3) 2-7-知识梳理双基自测34151.下列结论正确的打“”,错误的打“”.(1)若ac,则a20. ()(2)已知z=a+bi(a,br),当a=0时,复数z为纯虚数. ()(3)复数z=a+bi(a,br)的虚部为bi. ()(4)方程x2+x+1=0没有解. ()(5)由于复数包含实数,在实数范围内两个数能比较大小,因此在复数范围内两个数也能比较大小. () -8-知识梳

3、理双基自测234152.(2020浙江,2)已知ar,若a-1+(a-2)i(i为虚数单位)是实数,则a=()a.1b.-1c.2d.-2c-9-知识梳理双基自测234153.(2020全国,文2)若z=1+2i+i3,则|z|=()c解析:因为z=1+2i+i3=1+2i+i2i=1+2i-i=1+i,-10-知识梳理双基自测234154.复平面内表示复数z=i(-2+i)的点位于()a.第一象限 b.第二象限c.第三象限 d.第四象限 答案解析解析关闭由题意可得z=-1-2i,在复平面内对应点(-1,-2),则该点位于第三象限.故选c. 答案解析关闭c-11-知识梳理双基自测234155.

4、(教材习题改编p129tb1)已知(1+2i) =4+3i,则z=. 答案解析解析关闭 答案解析关闭-12-知识梳理双基自测23415自测点评1.在复数范围内实数的一些性质不一定成立,无解的一元二次方程在复数范围内都有解,且方程的根成对出现.2.在复数中,两个虚数或一个为实数,一个为虚数不能比较大小.3.利用复数相等,如a+bi=c+di列方程时,a,b,c,dr是前提条件.-13-考点1考点2考点3a.1b.-1c.id.-i(2)已知ar,i为虚数单位,若 为实数,则a的值为. 思考利用复数的四则运算求复数的一般方法是什么? 答案解析解析关闭 答案解析关闭-14-考点1考点2考点3解题心得

5、利用复数的四则运算求复数的一般方法:(1)复数的加法、减法、乘法运算可以类比多项式的运算.(2)复数的除法运算主要是利用分子、分母同乘分母的共轭复数进行运算化简.-15-考点1考点2考点3对点训练对点训练1(1)已知a,br,i是虚数单位,若a+i=2-bi,则(a+bi)2=()a.3-4ib.3+4ic.4-3id.4+3ia.1+ib.1-ic.-1+id.-1-i(3)设复数z满足(z-2i)(2-i)=5,则z=()a.2+3ib.2-3ic.3+2id.3-2i 答案解析解析关闭 答案解析关闭-16-考点1考点2考点3p1:|z|=2; p2:z2=2i; p3:z的共轭复数为1+

6、i; p4:z的虚部为-1.其中正确的是()a.p2,p3b.p1,p2c.p2,p4d.p3,p4(3)已知复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是.思考求解与复数概念相关问题的基本思路是什么? 答案解析解析关闭 答案解析关闭-17-考点1考点2考点3解题心得求解与复数概念相关问题的基本思路:复数的分类、复数的相等、复数的模、共轭复数以及求复数的实部、虚部都与复数的实部与虚部有关,所以解答与复数相关概念的问题时,需把所给复数化为代数形式,即a+bi(a,br)的形式,再根据题意求解.-18-考点1考点2考点3对点对点训练训练2(1)若复数z满足(3-4i)z=|4+3i

7、|,则z的虚部为()a.2+ib.2-ic.-1+id.-1-id d -19-考点1考点2考点3例3(1)设i是虚数单位,则复数 在复平面内所对应的点位于()a.第一象限 b.第二象限c.第三象限 d.第四象限(2)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()a.-5b.5c.-4+id.-4-i思考复数具有怎样的几何意义?几何意义的作用是什么?b a -20-考点1考点2考点3=-1+i,对应点为(-1,1),在第二象限内.故选b.(2)由题意知:z2=-2+i.又z1=2+i,所以z1z2=(2+i)(-2+i)=i2-4=-5.故选a.2.由于复数、点

8、、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.-21-考点1考点2考点3对点训练对点训练3(1)已知zi=2-i,则复数z在复平面内对应点的坐标是()a.(-1,-2)b.(-1,2)c.(1,-2)d.(1,2)(2)若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()a.(-,1)b.(-,-1)c.(1,+)d.(-1,+) 答案解析解析关闭 答案解析关闭-22-考点1考点2考点31.复数z=a+bi(a,br)是由它的实部和虚部唯一确定的,两个复数相等的充要条件是把复数问题转化为实数问题的主要方法.对于一个复数z=a+bi(a,br),既要从整体的角度去认识它,把复数看成一个整体,又要从实部、虚部的角度分解成两部分去认识.2.在复数的几何意义中,加法和减法对应向量的三角形法则,其方向是应注意的问题,平移往往和加法、减法相结合.3.在复数的四则运算中,加、减、乘运算按多项式运算法则进行,除法则需分母实数化.-23-考点1考点2考点31.判定复数是不是实数,仅注意虚部等于0是不够的,还需考虑它的实部是否有意义.2.注意复数和虚数是包含关系,不能把复数等同为虚数,如虚数不能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论