版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、May 28, 200373-347 Game Theory-Lecture 71Static (or Simultaneous-Move) Games of Complete InformationMixed Strategy Nash EquilibriumMay 28, 200373-347 Game Theory-Lecture 72Outline of Static Games of Complete Information nIntroduction to gamesnNormal-form (or strategic-form) representation nIterated
2、elimination of strictly dominated strategies nNash equilibriumnReview of concave functions, optimizationnApplications of Nash equilibrium nMixed strategy Nash equilibrium May 28, 200373-347 Game Theory-Lecture 73Todays AgendanReview of previous classnMixed strategiesnMixed strategy Nash equilibriumn
3、Use best response to find mixed strategy Nash equilibriumMay 28, 200373-347 Game Theory-Lecture 74Matching penniesnHead is Player 1s best response to Player 2s strategy TailnTail is Player 2s best response to Player 1s strategy TailnTail is Player 1s best response to Player 2s strategy HeadnHead is
4、Player 2s best response to Player 1s strategy HeadHence, NO Nash equilibriumPlayer 2HeadTailPlayer 1Head-1 , 1 1 , -1Tail 1 , -1-1 , 1May 28, 200373-347 Game Theory-Lecture 75Solving matching penniesnRandomize your strategies to surprise the rivalPlayer 1 chooses Head and Tail with probabilities r a
5、nd 1-r, respectively. Player 2 chooses Head and Tail with probabilities q and 1-q, respectively.nMixed Strategy:Specifies that an actual move be chosen randomly from the set of pure strategies with some specific probabilities.Player 2HeadTailPlayer 1Head-1 , 1 1 , -1Tail 1 , -1-1 , 1q1-qr1-rMay 28,
6、200373-347 Game Theory-Lecture 761qr11/21/2Solving matching penniesnPlayer 1s best responseB1(q):Head (r=1) if q0.5 Any mixed strategy (0r1) if q=0.5Player 2HeadTailPlayer 1Head-1 , 1 1 , -1Tail 1 , -1-1 , 1q1-q1-2q2q-1Expected payoffsr1-rMay 28, 200373-347 Game Theory-Lecture 77Solving matching pen
7、niesnPlayer 2s best responseB2(r):Tail (q=0) if r0.5Any mixed strategy (0q1) if r=0.5 Player 2HeadTailPlayer 1Head-1 , 1 1 , -1Tail 1 , -1-1 , 1q1-q1-2q2q-1Expected payoffsr1-rExpected payoffs2r-11-2r1qr11/21/2May 28, 200373-347 Game Theory-Lecture 781qr11/21/2Solving matching penniesnPlayer 1s best
8、 responseB1(q):Head (r=1) if q0.5 Any mixed strategy (0r1) if q=0.5nPlayer 2s best responseB2(r):Tail (q=0) if r0.5Any mixed strategy (0q1) if r=0.5Check r = 0.5 is best response to q=0.5q = 0.5 is best response to r=0.5Player 2HeadTailPlayer 1Head-1 , 1 1 , -1Tail 1 , -1-1 , 1r1-rq1-qMixed strategy
9、 Nash equilibriumMay 28, 200373-347 Game Theory-Lecture 79Mixed strategynMixed Strategy:A mixed strategy of a player is a probability distribution over players (pure) strategies.May 28, 200373-347 Game Theory-Lecture 710Mixed strategy: examplenMatching penniesnPlayer 1 has two pure strategies: H and
10、 T( 1(H)=0.5, 1(T)=0.5 ) is a Mixed strategy. That is, player 1 plays H and T with probabilities 0.5 and 0.5, respectively.( 1(H)=0.3, 1(T)=0.7 ) is another Mixed strategy. That is, player 1 plays H and T with probabilities 0.3 and 0.7, respectively.May 28, 200373-347 Game Theory-Lecture 711Mixed st
11、rategy: examplenPlayer 1: (3/4, 0, ) is a mixed strategy. That is, 1(T)=3/4, 1(M)=0 and 1(B)=1/4.nPlayer 2: (0, 1/3, 2/3) is a mixed strategy. That is, 2(L)=0, 2(C)=1/3 and 2(R)=2/3.Player 2L (0)C (1/3)R (2/3)Player 1T (3/4)0 , 23 , 31 , 1M (0)4 , 00 , 42 , 3B (1/4)3 , 45 , 10 , 7May 28, 200373-347
12、Game Theory-Lecture 712Expected payoffs: 2 players each with two pure strategiesnPlayer 1 plays a mixed strategy (r, 1- r ). Player 2 plays a mixed strategy ( q, 1- q ).Player 1s expected payoff of playing s11: EU1(s11, (q, 1-q)=qu1(s11, s21)+(1-q)u1(s11, s22)Player 1s expected payoff of playing s12
13、: EU1(s12, (q, 1-q)= qu1(s12, s21)+(1-q)u1(s12, s22)nPlayer 1s expected payoff from her mixed strategy:v1(r, 1-r), (q, 1-q)=r EU1(s11, (q, 1-q)+(1-r) EU1(s12, (q, 1-q)Player 2s21 ( q )s22 ( 1- q )Player 1s11 ( r )u1(s11, s21), u2(s11, s21)u1(s11, s22), u2(s11, s22)s12 (1- r )u1(s12, s21), u2(s12, s2
14、1)u1(s12, s22), u2(s12, s22)May 28, 200373-347 Game Theory-Lecture 713Expected payoffs: 2 players each with two pure strategiesnPlayer 1 plays a mixed strategy (r, 1- r ). Player 2 plays a mixed strategy ( q, 1- q ).Player 2s expected payoff of playing s21: EU2(s21, (r, 1-r)=ru2(s11, s21)+(1-r)u2(s1
15、2, s21)Player 2s expected payoff of playing s22: EU2(s22, (r, 1-r)= ru2(s11, s22)+(1-r)u2(s12, s22)nPlayer 2s expected payoff from her mixed strategy:v2(r, 1-r),(q, 1-q)=q EU2(s21, (r, 1-r)+(1-q) EU2(s22, (r, 1-r)Player 2s21 ( q )s22 ( 1- q )Player 1s11 ( r )u1(s11, s21), u2(s11, s21)u1(s11, s22), u
16、2(s11, s22)s12 (1- r )u1(s12, s21), u2(s12, s21)u1(s12, s22), u2(s12, s22)May 28, 200373-347 Game Theory-Lecture 714Expected payoffs: examplenPlayer 1:EU1(H, (0.3, 0.7) = 0.3(-1) + 0.71=0.4EU1(T, (0.3, 0.7) = 0.31 + 0.7(-1)=-0.4v1(0.4, 0.6), (0.3, 0.7)=0.4 0.4+0.6 (-0.4)=-0.08nPlayer 2:EU2(H, (0.4,
17、0.6) = 0.41+0.6(-1) = -0.2EU2(T, (0.4, 0.6) = 0.4(-1)+0.61 = 0.2v2(0.4, 0.6), (0.3, 0.7)=0.3(-0.2)+0.70.2=0.08Player 2H (0.3)T (0.7)Player 1H (0.4)-1 , 1 1 , -1T (0.6) 1 , -1-1 , 1May 28, 200373-347 Game Theory-Lecture 715Expected payoffs: examplenMixed strategies: p1=( 3/4, 0, ); p2=( 0, 1/3, 2/3 )
18、.nPlayer 1: EU1(T, p2)=3(1/3)+1(2/3)=5/3, EU1(M, p2)=0(1/3)+2(2/3)=4/3EU1(B, p2)=5(1/3)+0(2/3)=5/3. v1(p1, p2) = 5/3nPlayer 2: EU2(L, p1)=2(3/4)+4(1/4)=5/2, EU2(C, p1)=3(3/4)+3(1/4)=5/2,EU2(R, p1)=1(3/4)+7(1/4)=5/2. v1(p1, p2) = 5/2Player 2L (0)C (1/3)R (2/3)Player 1T (3/4)0 , 23 , 31 , 1M (0)4 , 00
19、 , 42 , 3B (1/4)3 , 45 , 10 , 7May 28, 200373-347 Game Theory-Lecture 716Mixed strategy equilibriumnMixed strategy equilibriumA probability distribution for each playerThe distributions are mutual best responses to one another in the sense of expected payoffsMay 28, 200373-347 Game Theory-Lecture 71
20、7Mixed strategy equilibrium: 2-player each with two pure strategiesnMixed strategy Nash equilibrium:nA pair of mixed strategies (r*, 1-r*), (q*, 1-q*)is a Nash equilibrium if (r*,1-r*) is a best response to (q*, 1-q*), and (q*, 1-q*) is a best response to (r*,1-r*). That is,v1(r*, 1-r*), (q*, 1-q*)
21、v1(r, 1-r), (q*, 1-q*), for all 0 r 1v2(r*, 1-r*), (q*, 1-q*) v2(r*, 1-r*), (q, 1-q), for all 0 q 1Player 2s21 ( q )s22 ( 1- q )Player 1s11 ( r )u1(s11, s21), u2(s11, s21)u1(s11, s22), u2(s11, s22)s12 (1- r )u1(s12, s21), u2(s12, s21)u1(s12, s22), u2(s12, s22)May 28, 200373-347 Game Theory-Lecture 7
22、18Find mixed strategy equilibrium in 2-player each with two pure strategiesnFind the best response correspondence for player 1, given player 2s mixed strategynFind the best response correspondence for player 2, given player 1s mixed strategynUse the best response correspondences to determine mixed s
23、trategy Nash equilibria.May 28, 200373-347 Game Theory-Lecture 719Employee MonitoringnEmployees can work hard or shirknSalary: $100K unless caught shirking nCost of effort: $50KnManagers can monitor or notnValue of employee output: $200KnProfit if employee doesnt work: $0nCost of monitoring: $10KMay
24、 28, 200373-347 Game Theory-Lecture 720nEmployees best response B1(q):Shirk (r=0) if q0.5Any mixed strategy (0 r 1) if q=0.5Employee MonitoringManagerMonitor ( q )Not Monitor (1-q)EmployeeWork ( r )50 , 9050 , 100Shirk (1-r )0 , -10100 , -10050100(1-q)Expected payoffsExpected payoffs100r-10200r-100M
25、ay 28, 200373-347 Game Theory-Lecture 721nManagers best response B2(r):Monitor (q=1) if r0.9 Any mixed strategy (0 q 1) if r=0.9Employee MonitoringManagerMonitor ( q )Not Monitor (1-q)EmployeeWork ( r )50 , 9050 , 100Shirk (1-r )0 , -10100 , -10050100(1-q)Expected payoffsExpected payoffs100r-10200r-100May 28, 200373-347 Game Theory-Lecture 7221qr10.5nEmployees best response B1(q):Shirk (r=0) if q0.5 Any mixed strategy (0 r 1) if q=0.5nManagers best response B2(r):Monitor (q=1) if r0.9 Any mixe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 注册核安全工程师绩效考核指标体系及方法
- 管片破损应急预案
- 面向未来的技能发展与培训体系构建-洞察及研究
- 体育经纪人中级面试成功关键
- 媒介经理的日常工作流程与规范
- 产品上市策划与推广记录
- 储能技术员初级岗位工作量化考核方案
- 数据采集工程师岗位季度工作总结
- 初级书法培训师日常教学管理规范
- 社会体育指导员如何有效开展飞盘活动组织与安排
- 2025年军队文职人员招聘考试题库附答案(满分必刷)
- 办公室文秘工作流程优化策略
- 2025高中政治主观题答题模板
- 3.1生活中的立体图形(教学设计)- 华东师大版(2024)七上
- 2025贵州天健福康医养供应链有限责任公司招聘劳动合同制人员18人实施考试参考试题及答案解析
- 2025下半年厦门市总工会招聘工会专干和集体协商指导员50人考试参考题库及答案解析
- 【新教材】2025-2026学年人教版(2024)信息科技六年级全一册教案(教学设计)
- 档案数字化项目实施监督方案
- 2025年节能减排在铁路运输业中的实施策略可行性研究报告
- 液压设备安全培训课程课件
- 国开2025年《行政领导学》形考作业1-4答案
评论
0/150
提交评论