高考卷06普通高等学校招生全国统一考试湖北卷.理含详解_第1页
高考卷06普通高等学校招生全国统一考试湖北卷.理含详解_第2页
高考卷06普通高等学校招生全国统一考试湖北卷.理含详解_第3页
高考卷06普通高等学校招生全国统一考试湖北卷.理含详解_第4页
高考卷06普通高等学校招生全国统一考试湖北卷.理含详解_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2006年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)本试卷分第卷(选择题)和第卷(非选择题)两部分。第卷1至2页,第卷3至4页,共4页。全卷共150分。考试用时120分钟。第卷(选择题 共50分)注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题纸上,并将准考证号条形码粘贴在答题卡上的指定位置。2. 每小题选出答案后,用2b铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷上无效。3. 考试结束后,监考人员将本试题卷和答题卡一并收回。一、选择题:本大题共10小题,每小题5分,共50分散。在每个小题给出的四个选项中,

2、只有一项是符合题目要求的。1已知向量,是不平行于轴的单位向量,且,则 ( b )a() b() c() d()2.若互不相等的实数成等差数列,成等比数列,且,则 ( d )a4 b2 c2 d43.若的内角满足,则 ( a )a. b c d4设,则的定义域为 ( b )a b c d5在的展开式中,的幂的指数是整数的项共有 ( c ) a3项 b4项 c5项 d6项6关于直线与平面,有以下四个命题: 若且,则;若且,则;若且,则;若且,则;其中真命题的序号是 ( d )a b c d7设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若且,则点的轨迹方程是 (

3、d )a bc d8有限集合中元素的个数记做,设都为有限集合,给出下列命题:的充要条件是;的充要条件是;的充要条件是;的充要条件是;其中真命题的序号是 ( b )a b c d9已知平面区域d由以为顶点的三角形内部边界组成。若在区域d上有无穷多个点可使目标函数取得最小值,则 (c )a2 b1 c1 d410关于的方程,给出下列四个命题: ( a )存在实数,使得方程恰有2个不同的实根;存在实数,使得方程恰有4个不同的实根;存在实数,使得方程恰有5个不同的实根;存在实数,使得方程恰有8个不同的实根;其中假命题的个数是a0 b1 c2 d3第卷(非选择题 共100分)注意事项:第卷用0.5毫米黑

4、色的签字笔或黑色墨水钢笔直接答在答题卡上。答在试题卷上无效。二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡相应位置上。11设为实数,且,则 4 。12接种某疫苗后,出现发热反应的概率为080,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 0.94 。(精确到001)13已知直线与圆相切,则的值为 18或8 。14某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 20 。(用数字作答)15将杨辉三角中的每一个数都换成,就得到一个如右图所示的分数

5、三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中 r1 。令,则 。三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。16(本小题满分12分)设函数,其中向量,。()、求函数的最大值和最小正周期;()、将函数的图像按向量平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的。 点评:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力。 解:()由题意得,f(x)a(b+c)=(sinx,cosx)(sinxcosx,sinx3cosx) sin2x2sinxcosx+3cos2x2+cos2xsin2x

6、2+sin(2x+).所以,f(x)的最大值为2+,最小正周期是.()由sin(2x+)0得2x+k.,即x,kz,于是d(,2),kz.因为k为整数,要使最小,则只有k1,此时d(,2)即为所求.17(本小题满分13分)已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。()、求数列的通项公式;()、设,是数列的前n项和,求使得对所有都成立的最小正整数m;点评:本小题考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力。解:()设这二次函数f(x)ax2+bx (a0) ,则 f(x)=2ax+b,由于f(x)=6x2

7、,得a=3 , b=2, 所以 f(x)3x22x.又因为点均在函数的图像上,所以3n22n.当n2时,ansnsn1(3n22n)6n5.当n1时,a1s13122615,所以,an6n5 ()()由()得知,故tn(1).因此,要使(1)()成立的m,必须且仅须满足,即m10,所以满足要求的最小正整数m为10.18(本小题满分12分)如图,在棱长为1的正方体中,是侧棱上的一点,。()、试确定,使直线与平面所成角的正切值为;()、在线段上是否存在一个定点q,使得对任意的,d1q在平面上的射影垂直于,并证明你的结论。点评:本小题主要考查线面关系、直线于平面所成的角的有关知识及空间想象能力和推理

8、运算能力,考查运用向量知识解决数学问题的能力。解法1:()连ac,设ac与bd相交于点o,ap与平面相交于点,,连结og,因为pc平面,平面平面apcog,故ogpc,所以,ogpc.又aobd,aobb1,所以ao平面,故ago是ap与平面所成的角.在rtaog中,tanago,即m.所以,当m时,直线ap与平面所成的角的正切值为.()可以推测,点q应当是aici的中点o1,因为d1o1a1c1, 且 d1o1a1a ,所以 d1o1平面acc1a1,又ap平面acc1a1,故 d1o1ap.那么根据三垂线定理知,d1o1在平面apd1的射影与ap垂直。19(本小题满分10分)在某校举行的数

9、学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。()、试问此次参赛学生总数约为多少人?()、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表01234567891.21.31.41.92.02.10.88490.90320.91920.97130.97720.98210.88690.90490.92070.97190.97780.98260.8880.90660.92220.97260.97830.98300.89070.90820.92360.97320.97880.98340.89250

10、.90990.92510.97380.97930.98380.89440.91150.92650.97440.97980.98420.89620.91310.92780.97500.98030.98460.89800.91470.92920.97560.98080.98500.89970.91620.93060.97620.98120.98540.90150.91770.93190.97670.98170.9857点评:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力。解:()设参赛学生的分数为,因为n(70,100),由条件知,p(90)1

11、p(90)1f(90)11(2)10.97720.228.这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28,因此,参赛总人数约为526(人)。()假定设奖的分数线为x分,则p(x)1p(x)1f(90)10.0951,即0.9049,查表得1.31,解得x83.1.故设奖得分数线约为83.1分。20(本小题满分14分)设分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且为它的右准线。()、求椭圆的方程;()、设为右准线上不同于点(4,0)的任意一点,若直线分别与椭圆相交于异于的点,证明点在以为直径的圆内。(此题不要求在答题卡上画图)点评:本小题主要考查直线、圆和椭圆等平面

12、解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力。解:()依题意得 a2c,4,解得a2,c1,从而b.故椭圆的方程为 .()解法1:由()得a(2,0),b(2,0).设m(x0,y0).m点在椭圆上,y0(4x02). 又点m异于顶点a、b,2x00,0,则mbp为锐角,从而mbn为钝角,故点b在以mn为直径的圆内。解法2:由()得a(2,0),b(2,0).设m(x1,y1),n(x2,y2),则2x12,2x22,又mn的中点q的坐标为(,),依题意,计算点b到圆心q的距离与半径的差(2)2()2(x1x2)2(y1y2)2 (x12) (x22)y1y1 又

13、直线ap的方程为y,直线bp的方程为y,而点两直线ap与bp的交点p在准线x4上,即y2 又点m在椭圆上,则,即 于是将、代入,化简后可得.从而,点b在以mn为直径的圆内。21(本小题满分14分)设是函数的一个极值点。()、求与的关系式(用表示),并求的单调区间;()、设,。若存在使得成立,求的取值范围。 点评:本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力。解:()f (x)x2(a2)xba e3x,由f (3)=0,得 32(a2)3ba e330,即得b32a,则 f (x)x2(a2)x32aa e3xx2(a2)x33a e3x(x3)(xa+1)

14、e3x.令f (x)0,得x13或x2a1,由于x3是极值点,所以x+a+10,那么a4.当a3x1,则在区间(,3)上,f (x)0,f (x)为增函数;在区间(a1,)上,f (x)4时,x23x1,则在区间(,a1)上,f (x)0,f (x)为增函数;在区间(3,)上,f (x)0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间0,4上的值域是min(f (0),f (4) ),f (3),而f (0)(2a3)e30,f (3)a6,那么f (x)在区间0,4上的值域是(2a3)e3,a6.又在区间0,4上是增函数,且它在区间0,4上的值域

15、是a2,(a2)e4,由于(a2)(a6)a2a()20,所以只须仅须(a2)(a6)0,解得0a0,可知a这锐角,所以sinacosa0,又,故选a4设,则的定义域为 ( b )a b c d解:f(x)的定义域是(2,2),故应有22且22解得4x1或1x0,b0,于是,由可得ax,b3y,所以x0,y0又(a,b)(x,3y),由1可得故选d8有限集合中元素的个数记做,设都为有限集合,给出下列命题:的充要条件是;的充要条件是;的充要条件是;的充要条件是;其中真命题的序号是 ( b )a b c d解:集合a与集合b没有公共元素,正确集合a中的元素都是集合b中的元素,正确集合a中至少有一个

16、元素不是集合b中的元素,因此a中元素的个数有可能多于b中元素的个数,错误集合a中的元素与集合b中的元素完全相同,两个集合的元素个数相同,并不意味着它们的元素相同,错误选b9已知平面区域d由以为顶点的三角形内部以及边界组成。若在区域d上有无穷多个点可使目标函数zxmy取得最小值,则 (c )a2 b1 c1 d4解:依题意,令z0,可得直线xmy0的斜率为,结合可行域可知当直线xmy0与直线ac平行时,线段ac上的任意一点都可使目标函数zxmy取得最小值,而直线ac的斜率为1,所以m1,选c10关于的方程,给出下列四个命题: ( a )存在实数,使得方程恰有2个不同的实根;存在实数,使得方程恰有

17、4个不同的实根;存在实数,使得方程恰有5个不同的实根;存在实数,使得方程恰有8个不同的实根;其中假命题的个数是a0 b1 c2 d3解:关于x的方程可化为(1)或(1x1)(2) 当k2时,方程(1)的解为,方程(2)无解,原方程恰有2个不同的实根 当k时,方程(1)有两个不同的实根,方程(2)有两个不同的实根,即原方程恰有4个不同的实根 当k0时,方程(1)的解为1,1,方程(2)的解为x0,原方程恰有5个不同的实根 当k时,方程(1)的解为,方程(2)的解为,即原方程恰有8个不同的实根选a第卷(非选择题 共100分)注意事项:第卷用0.5毫米黑色的签字笔或黑色墨水钢笔直接答在答题卡上。答在

18、试题卷上无效。二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡相应位置上。11设为实数,且,则 4 。解:,而 所以,解得x1,y5,所以xy4。12接种某疫苗后,出现发热反应的概率为080,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 0.94 。(精确到001)解:p0.9413已知直线与圆相切,则的值为 18或8 。解:圆的方程可化为,所以圆心坐标为(1,0),半径为1,由已知可得,所以的值为18或8。14某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程

19、的不同排法种数是 20 。(用数字作答)解:依题意,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中,可得有20种不同排法。15将杨辉三角中的每一个数都换成,就得到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中 r1 。令,则解:第一个空通过观察可得。(11)()()()()()(1)()2()(1)()()()1所以三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。16(本小题满分12分)设函数,其中向量,。()、求函数的最大值和最小正周期;()、将函数的图像按向量平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小

20、的。 点评:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力。 解:()由题意得,f(x)a(b+c)=(sinx,cosx)(sinxcosx,sinx3cosx) sin2x2sinxcosx+3cos2x2+cos2xsin2x2+sin(2x+).所以,f(x)的最大值为2+,最小正周期是.()由sin(2x+)0得2x+k.,即x,kz,于是d(,2),kz.因为k为整数,要使最小,则只有k1,此时d(,2)即为所求.17(本小题满分13分)已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。()、求数

21、列的通项公式;()、设,是数列的前n项和,求使得对所有都成立的最小正整数m;点评:本小题考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力。解:()设这二次函数f(x)ax2+bx (a0) ,则 f(x)=2ax+b,由于f(x)=6x2,得a=3 , b=2, 所以 f(x)3x22x.又因为点均在函数的图像上,所以3n22n.当n2时,ansnsn1(3n22n)6n5.当n1时,a1s13122615,所以,an6n5 ()()由()得知,故tn(1).因此,要使(1)()成立的m,必须且仅须满足,即m10,所以满足要求的最小正整数m为10

22、.18(本小题满分12分)如图,在棱长为1的正方体中,是侧棱上的一点,。()、试确定,使直线与平面所成角的正切值为;()、在线段上是否存在一个定点q,使得对任意的,d1q在平面上的射影垂直于,并证明你的结论。点评:本小题主要考查线面关系、直线于平面所成的角的有关知识及空间想象能力和推理运算能力,考查运用向量知识解决数学问题的能力。解法1:()连ac,设ac与bd相交于点o,ap与平面相交于点,,连结og,因为pc平面,平面平面apcog,故ogpc,所以,ogpc.又aobd,aobb1,所以ao平面,故ago是ap与平面所成的角.在rtaog中,tanago,即m.所以,当m时,直线ap与平

23、面所成的角的正切值为.()可以推测,点q应当是aici的中点o1,因为d1o1a1c1, 且 d1o1a1a ,所以 d1o1平面acc1a1,又ap平面acc1a1,故 d1o1ap.那么根据三垂线定理知,d1o1在平面apd1的射影与ap垂直。19(本小题满分10分)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布。已知成绩在90分以上(含90分)的学生有12名。()、试问此次参赛学生总数约为多少人?()、若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表01234567891.21.31.41.92.02.10.88490

24、.90320.91920.97130.97720.98210.88690.90490.92070.97190.97780.98260.8880.90660.92220.97260.97830.98300.89070.90820.92360.97320.97880.98340.89250.90990.92510.97380.97930.98380.89440.91150.92650.97440.97980.98420.89620.91310.92780.97500.98030.98460.89800.91470.92920.97560.98080.98500.89970.91620.93060.

25、97620.98120.98540.90150.91770.93190.97670.98170.9857点评:本小题主要考查正态分布,对独立事件的概念和标准正态分布的查阅,考查运用概率统计知识解决实际问题的能力。解:()设参赛学生的分数为,因为n(70,100),由条件知,p(90)1p(90)1f(90)11(2)10.97720.228.这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28,因此,参赛总人数约为526(人)。()假定设奖的分数线为x分,则p(x)1p(x)1f(90)10.0951,即0.9049,查表得1.31,解得x83.1.故设奖得分数线约为83.1分。20(本小题满分14分)设分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且为它的右准线。()、求椭圆的方程;()、设为右准线上不同于点(4,0)的任意一点,若直线分别与椭圆相交于异于的点,证明点在以为直径的圆内。(此题不要求在答题卡上画图)点评:本小题主要考查直线、圆和椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力。解:()依题意得 a2c,4,解得a2,c1,从而b.故椭圆的方程为 .()解法1:由()得a(2,0),b(2,0).设m(x0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论