




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、目录目录拉伸、压缩与剪切拉伸、压缩与剪切l2.1 2.1 轴向拉伸与压缩的概念和实例轴向拉伸与压缩的概念和实例l2.1 2.1 轴向拉伸与压缩的概念和实例轴向拉伸与压缩的概念和实例 作用在杆件上的外力合力的作用线与作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸杆件轴线重合,杆件变形是沿轴线方向的伸长或缩短。长或缩短。拉(压)杆的受力简图拉(压)杆的受力简图F FF F拉伸拉伸F FF F压缩压缩l2.1 2.1 轴向拉伸与压缩的概念和实例轴向拉伸与压缩的概念和实例受力受力特点与变形特点:特点与变形特点:l2.1 2.1 轴向拉伸与压缩的概念和实例轴向拉伸与压缩的概念和实
2、例l2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力 1 1、截面法求内力、截面法求内力F FF Fm mm mF FF FN N 0 xFF FF FN N0FFNFFN(1)(1)假想沿假想沿m-mm-m横截面将横截面将 杆杆切开切开(2)(2)留下左半段或右半段留下左半段或右半段(3)(3)将弃去部分对留下部分将弃去部分对留下部分 的作用用内力代替的作用用内力代替(4)(4)对留下部分写平衡方程对留下部分写平衡方程 求出内力即轴力的值求出内力即轴力的值l2.2 2.2 轴向拉伸或压缩时横截面上的内轴向拉伸或压缩时横截面上的内力和应力力和应力2 2、
3、轴力:截面上的内力、轴力:截面上的内力 0 xF0FFNFFNF FF Fm mm mF FF FN NF FF FN N 由于外力的作用线由于外力的作用线与杆件的轴线重合,内与杆件的轴线重合,内力的作用线也与杆件的力的作用线也与杆件的轴线重合。所以称为轴轴线重合。所以称为轴力。力。3 3、轴力正负号:、轴力正负号: 拉为正、压为负拉为正、压为负4 4、轴力图:轴力沿杆、轴力图:轴力沿杆 件轴线的变化件轴线的变化l2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力已知已知F F1 1=10kN=10kN;F F2 2=20kN=20kN; F F3 3=3
4、5kN=35kN;F F4 4=25kN;=25kN;试画试画出图示杆件的轴力图。出图示杆件的轴力图。11例题例题2.12.1FN1F1解:解:1 1、计算各段的轴力。、计算各段的轴力。F1F3F2F4ABCD2233FN3F4FN2F1F2 0 xFkN1011 FFNABAB段段kN102010212FFFNBCBC段段122FFFN 0 xF 0 xFkN2543 FFNCDCD段段2 2、绘制轴力图。、绘制轴力图。kNNFx102510 l2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力 杆件的强度不仅与轴力有关,还与横截面面杆件的强度不仅与轴力
5、有关,还与横截面面积有关。必须用应力来比较和判断杆件的强度。积有关。必须用应力来比较和判断杆件的强度。NAFdA 在拉(压)杆的在拉(压)杆的横截面上,横截面上,与轴与轴力力F FN N对应的应力是正应力对应的应力是正应力 。根据连根据连续性假设,横截面上到处都存在着内续性假设,横截面上到处都存在着内力。于是得静力关系:力。于是得静力关系:l2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力 平面假设平面假设变形前原为平面的横截面,变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线。变形后仍保持为平面且仍垂直于轴线。横向线横向线ab、cd仍为直线,且
6、仍为直线,且仍垂直于杆轴仍垂直于杆轴线,只是分别线,只是分别平行移至平行移至ab、cd。 观察变形:观察变形: FFaabcbddcl2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力NAAFdAdAANFA从平面假设可以判断:从平面假设可以判断:(1)所有纵向纤维伸长相等)所有纵向纤维伸长相等(2)因材料均匀,故各纤维受力相等)因材料均匀,故各纤维受力相等(3)内力均匀分布,各点正应力相等,为常量)内力均匀分布,各点正应力相等,为常量 FFaabcbddcl2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力AFN 该
7、式为横截面上的正应力该式为横截面上的正应力计计算公式。正应力算公式。正应力和轴力和轴力F FN N同号。同号。即拉应力为正,压应力为负。即拉应力为正,压应力为负。圣维南原理圣维南原理l2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力l2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力例题例题2.22.2 图示结构,试求杆件图示结构,试求杆件ABAB、CBCB的的应力。已知应力。已知 F F=20kN=20kN;斜杆;斜杆ABAB为直为直径径20mm20mm的圆截面杆,水平杆的圆截面杆,水平杆CBCB为为1515151
8、5的方截面杆。的方截面杆。F FA AB BC C 0yFkN3 .281NF解:解:1 1、计算各杆件的轴力。、计算各杆件的轴力。(设斜杆为(设斜杆为1 1杆,水平杆为杆,水平杆为2 2杆)杆)用截面法取节点用截面法取节点B B为研究对象为研究对象kN202NF 0 xF4545045cos21NNFF045sin1 FFN1 12 2F FB BF F1NF2NFxy4545l2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力kN3 .281NFkN202NF2 2、计算各杆件的应力。、计算各杆件的应力。MPa90Pa109010204103 .286
9、623111AFNMPa89Pa1089101510206623222AFNF FA AB BC C45451 12 2F FB BF F1NF2NFxy4545第二章第二章 拉伸、压缩与剪切拉伸、压缩与剪切(2)(2)l失效、安全因数和强度计算失效、安全因数和强度计算一一 、安全因数和许用应力、安全因数和许用应力工作应力工作应力AFN nu极限应力极限应力塑性材料塑性材料脆性材料脆性材料)(2 . 0pSu)(bcbtu塑性材料的许用应力塑性材料的许用应力 spssnn2 . 0脆性材料的许用应力脆性材料的许用应力 bbcbbtnn n n 安全因数安全因数 许用应力许用应力 l失效、安全因
10、数和强度计算失效、安全因数和强度计算二二 、强度条件、强度条件 AFNmax AFNmax根据强度条件,可以解决三类强度计算问题根据强度条件,可以解决三类强度计算问题1 1、强度校核:、强度校核: NFA2 2、设计截面:、设计截面: AFN3 3、确定许可载荷:、确定许可载荷:l2.7 2.7 失效、安全因数和强度计算失效、安全因数和强度计算例题例题2.42.4油缸盖与缸体采用油缸盖与缸体采用6 6个螺栓连接。已知油缸内径个螺栓连接。已知油缸内径D=350mmD=350mm,油压,油压p=1MPap=1MPa。螺栓许用应力。螺栓许用应力=40MPa=40MPa, 求螺栓的内径。求螺栓的内径。
11、pDF24每个螺栓承受轴力为总压力的每个螺栓承受轴力为总压力的1/61/6解:解: 油缸盖受到的力油缸盖受到的力根据强度条件根据强度条件 AFNmax 22.6mmm106 .22104061035. 0636622pDd即螺栓的轴力为即螺栓的轴力为pDFFN2246 NFA得得 24422pDd即即螺栓的直径为螺栓的直径为Dpl2.7 2.7 失效、安全因数和强度计算失效、安全因数和强度计算例题例题2.52.5 ACAC为为505050505 5的等边角钢,的等边角钢,ABAB为为1010号槽钢,号槽钢,=120MPa=120MPa。确定许可载荷。确定许可载荷F F。FFFN2sin/1解:
12、解:1 1、计算轴力(设斜杆为、计算轴力(设斜杆为1 1杆,水平杆杆,水平杆为为2 2杆)用截面法取节点杆)用截面法取节点A A为研究对象为研究对象FFFNN3cos12 0yF 0 xF0cos21NNFF0sin1FFN2 2、根据斜杆的强度,求许可载荷、根据斜杆的强度,求许可载荷 kN6 .57N106 .57108 . 4210120212134611AFA AF F1NF2NFxy查表得斜杆查表得斜杆ACAC的面积为的面积为A A1 1=2=24.8cm4.8cm2 2 1112NFFAl2.7 2.7 失效、安全因数和强度计算失效、安全因数和强度计算FFFNN3cos123 3、根
13、据水平杆的强度,求许可载荷、根据水平杆的强度,求许可载荷 kN7 .176N107 .1761074.12210120732. 113134622AFA AF F1NF2NFxy查表得水平杆查表得水平杆ABAB的面积为的面积为A A2 2=2=212.74cm12.74cm2 2 2223NFFA4 4、许可载荷、许可载荷 kN6 .57176.7kNkN6 .57minminiFFl2.12 2.12 应力集中的概念应力集中的概念 常见的油孔、沟槽常见的油孔、沟槽等均有构件尺寸突变,等均有构件尺寸突变,突变处将产生应力集中突变处将产生应力集中现象。即现象。即maxK理论应力理论应力集中因数集
14、中因数1 1、形状尺寸的影响:、形状尺寸的影响: 2 2、材料的影响:、材料的影响: 应力集中对塑性材料的影应力集中对塑性材料的影响不大;响不大;应力集中对脆性材料应力集中对脆性材料的影响严重,应特别注意。的影响严重,应特别注意。 尺寸变化越急剧、角尺寸变化越急剧、角越尖、孔越小,应力集中越尖、孔越小,应力集中的程度越严重。的程度越严重。应力集中对构件强度的影响应力集中对构件强度的影响对于脆性材料构件,当对于脆性材料构件,当 max b 时,构件断裂。时,构件断裂。对于塑性材料构件,当对于塑性材料构件,当 max达到达到 s 后再增加载荷,后再增加载荷, 分布趋于均匀化,不影响构件静强度分布趋
15、于均匀化,不影响构件静强度应力集中促使疲劳裂纹的形成与扩展,对构件应力集中促使疲劳裂纹的形成与扩展,对构件 (塑性与脆性材料)的疲劳强度影响极大(塑性与脆性材料)的疲劳强度影响极大第三章第三章 扭扭 转转第三章第三章 扭扭 转转3.1 3.1 扭转的概念和实例扭转的概念和实例3.2 3.2 外力偶矩的计算外力偶矩的计算 扭矩和扭矩图扭矩和扭矩图3.3 3.3 纯剪切纯剪切3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力3.5 3.5 圆轴扭转时的变形圆轴扭转时的变形3.7 3.7 非圆截面杆扭转的概念非圆截面杆扭转的概念汽车传动轴汽车传动轴3.1 3.1 扭转的概念和实例扭转的概念和实例汽车方
16、向盘汽车方向盘3.1 3.1 扭转的概念和实例扭转的概念和实例 杆件受到大小相等杆件受到大小相等, ,方向相反且方向相反且作用平作用平面垂直于杆件轴线的力偶作用面垂直于杆件轴线的力偶作用, , 杆件的横截杆件的横截面绕轴线产生相对转动。面绕轴线产生相对转动。 受扭转变形杆件通常为轴类零件,其横受扭转变形杆件通常为轴类零件,其横截面大都是圆形的。所以本章主要介绍截面大都是圆形的。所以本章主要介绍圆轴圆轴扭转扭转。扭转受力特点扭转受力特点及变形特点及变形特点: :3.1 3.1 扭转的概念和实例扭转的概念和实例直接计算直接计算1.1.外力偶矩外力偶矩3.2 3.2 外力偶矩的计算外力偶矩的计算 扭
17、矩和扭矩图扭矩和扭矩图按输入功率和转速计算按输入功率和转速计算电机每秒输入功:电机每秒输入功:外力偶作功完成:外力偶作功完成:1000(N m)WP602nMWe已知已知轴转速轴转速n n 转转/ /分钟分钟输出功率输出功率P P 千瓦千瓦求:力偶矩求:力偶矩M Me ePP3.2 3.2 外力偶矩的计算外力偶矩的计算 扭矩和扭矩图扭矩和扭矩图T = Me2.2.扭矩和扭矩图扭矩和扭矩图3.2 3.2 外力偶矩的计算外力偶矩的计算 扭矩和扭矩图扭矩和扭矩图用截面法研究横用截面法研究横截面上的内力截面上的内力扭矩正负规定扭矩正负规定右手螺旋法则右手螺旋法则右手拇指指向外法线方向为右手拇指指向外法
18、线方向为正正(+),(+),反之为反之为负负(-)(-)3.2 3.2 外力偶矩的计算外力偶矩的计算 扭矩和扭矩图扭矩和扭矩图扭矩图扭矩图 3.2 3.2 外力偶矩的计算外力偶矩的计算 扭矩和扭矩图扭矩和扭矩图解解: :(1)(1)计算外力偶矩计算外力偶矩例题例题3.13.13.2 3.2 外力偶矩的计算外力偶矩的计算 扭矩和扭矩图扭矩和扭矩图 传动轴传动轴, ,已知转速已知转速 n=300r/min, n=300r/min,主动轮主动轮A A输入功率输入功率P PA A=45kW,=45kW,三个从动轮输出功率分别为三个从动轮输出功率分别为 P PB B=10kW,P=10kW,PC C=1
19、5kW,=15kW,P PD D=20kW.=20kW.试绘轴的扭矩图试绘轴的扭矩图. .9549/eMP n由公式由公式(2)(2)计算扭矩计算扭矩(3) (3) 扭矩图扭矩图3.2 3.2 外力偶矩的计算外力偶矩的计算 扭矩和扭矩图扭矩和扭矩图3.2 3.2 外力偶矩的计算外力偶矩的计算 扭矩和扭矩图扭矩和扭矩图max1432TN m 传动轴上主、传动轴上主、从动轮安装的位从动轮安装的位置不同,轴所承置不同,轴所承受的最大扭矩也受的最大扭矩也不同。不同。BMCMA AB BC CD DAMDM31432ATMN m A AAM3T318N318N. .m m795N795N. .m m14
20、32N1432N. .m m3.2 3.2 外力偶矩的计算外力偶矩的计算 扭矩和扭矩图扭矩和扭矩图3.3 3.3 纯剪切纯剪切一、薄壁圆筒扭转时的切应力一、薄壁圆筒扭转时的切应力 将一薄壁圆筒表面用纵向平行线和圆将一薄壁圆筒表面用纵向平行线和圆周线划分;周线划分;两端施以大小相等方向相反两端施以大小相等方向相反一对力偶矩一对力偶矩。 圆周线大小形状不变,各圆周线间距圆周线大小形状不变,各圆周线间距离不变;离不变;纵向平行线仍然保持为直线且纵向平行线仍然保持为直线且相互平行,只是倾斜了一个角度。相互平行,只是倾斜了一个角度。观察到:观察到:结果说明横截面上没有正应力结果说明横截面上没有正应力3.
21、3 3.3 纯剪切纯剪切 采用截面法将圆筒截开,横截面采用截面法将圆筒截开,横截面上分布有与截面平行的切应力。由于上分布有与截面平行的切应力。由于壁很薄,可以假设切应力沿壁厚均匀壁很薄,可以假设切应力沿壁厚均匀分布。分布。2eMrr 由平衡方程由平衡方程 ,得,得0zM 22eMr二、切应力互等定理二、切应力互等定理3.3 3.3 纯剪切纯剪切 在相互垂直在相互垂直的两个平面上,的两个平面上,切应力必然成对切应力必然成对存在,且数值相存在,且数值相等;两者都垂直等;两者都垂直于两个平面的交于两个平面的交线,方向则共同线,方向则共同指向或共同背离指向或共同背离这一交线。这一交线。纯剪切纯剪切 各
22、个截面上只有切应各个截面上只有切应力没有正应力的情况称为力没有正应力的情况称为纯剪切纯剪切切应力互等定理:切应力互等定理:3.3 3.3 纯剪切纯剪切三、切应变三、切应变 剪切胡克定律剪切胡克定律 在切应力的作用下,在切应力的作用下,单元体的直角将发生微小单元体的直角将发生微小的改变,这个改变量的改变,这个改变量 称称为切应变。为切应变。 当切应力不超过材料当切应力不超过材料的剪切比例极限时,切应的剪切比例极限时,切应变变 与切应力与切应力成正比,成正比,这个关系称为这个关系称为剪切胡克定剪切胡克定律律。 GG 剪切弹性模量剪切弹性模量(GN/m2) 各向同性材料,各向同性材料,三个弹性常数之
23、间的三个弹性常数之间的关系:关系:2(1)EG3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力1.1.变形几何关系变形几何关系观察变形:观察变形: 圆周线长度形状不变,各圆周线间圆周线长度形状不变,各圆周线间距离不变,只是绕轴线转了一个微小角距离不变,只是绕轴线转了一个微小角度;度;纵向平行线仍然保持为直线且相互纵向平行线仍然保持为直线且相互平行,只是倾斜了一个平行,只是倾斜了一个微小微小角度。角度。圆轴扭转的平面假设:圆轴扭转的平面假设: 圆轴扭转变形前原为平面的横截面,变形后仍圆轴扭转变形前原为平面的横截面,变形后仍保持为平面,形状和大小不变,半径仍保持为直线;保持为平面,形状和大小不变,
24、半径仍保持为直线;且相邻两截面间的距离不变。且相邻两截面间的距离不变。M Me ex xppqqM Me ex xppqqM Me eM Me e3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力_扭转角(扭转角(radrad)_ddxdx微段两截面的微段两截面的相对扭转角相对扭转角边缘上边缘上a a点的错动距离:点的错动距离:aaRddxdRdx边缘上边缘上a a点的切应变:点的切应变: 发生在垂直于半径的平面内。发生在垂直于半径的平面内。MeppqqMexdOdcabRdxabppqq3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力dxd dR距圆心为距圆心为的圆周的圆周上上e e点的错动距
25、离:点的错动距离:ccddx 距圆心为距圆心为处的处的切应变:切应变:ddx也发生在垂直于也发生在垂直于半径的平面内。半径的平面内。ddx扭转角扭转角 沿沿x x轴的变化率。轴的变化率。dOdcabRdxabppqqee3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力2.2.物理关系物理关系根据剪切胡克定律根据剪切胡克定律GdGGdx距圆心为距圆心为 处的处的切应力:切应力:垂直于半径垂直于半径横截面上任意点的切应力横截面上任意点的切应力 与该点到圆心的距离与该点到圆心的距离 成正比。成正比。3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力3.3.静力关系静力关系ATdA2AATdAdGdAd
26、xdAIAp2横截面对形心的极惯性矩横截面对形心的极惯性矩pIdGdxpdTGIdxpTI3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力公式适用于:公式适用于:1 1)圆杆)圆杆2 2)maxp令令抗扭截面系数抗扭截面系数ptIWRmaxtTW 在圆截面边缘上,在圆截面边缘上,有最大切应力有最大切应力 横截面上某点的切应力的方向与扭横截面上某点的切应力的方向与扭矩方向相同,并垂直于半径。切应力的矩方向相同,并垂直于半径。切应力的大小与其和圆心的距离成正比。大小与其和圆心的距离成正比。实心轴实心轴3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力与与 的计算的计算pItW/tpWIR3116Dp
27、ITmaxtWT空心轴空心轴令令则则3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力/(/2)tpWID3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力实心轴与空心轴实心轴与空心轴 与与 对比对比pItW/tpWIR3116D/(/2)tpWID3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力扭转强度条件:扭转强度条件: tmaxmaxWTmaxmaxmax()tTWmaxmaxtTW1. 1. 等截面圆轴:等截面圆轴:2. 2. 阶梯形圆轴:阶梯形圆轴:3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力强度条件的应用强度条件的应用 maxmaxtTW(1)校核强度)校核强度 tmaxmaxWT
28、(2)设计截面)设计截面 maxtTW (3)确定载荷)确定载荷 tmaxWT3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力例例3.23.2 由无缝钢管制成的汽车传动轴,外径由无缝钢管制成的汽车传动轴,外径D D=89=89mmmm、壁厚、壁厚 =2.5=2.5mmmm,材料为材料为2020号钢,使用号钢,使用时的时的最大扭矩最大扭矩T=T=19301930NmNm, , =70=70MPaMPa. .校核此校核此轴的强度。轴的强度。34340.9450.2(1)0.28.9 (10.945 )29tdDWD 6max6193066.7 10 Pa29 1066.7MPa 70MPatTW3
29、.4 3.4 圆轴扭转时的应力圆轴扭转时的应力例例3.33.3 如把上例中的传动轴改为实心轴,要求如把上例中的传动轴改为实心轴,要求它与原来的空心轴强度相同,试确定其直径。它与原来的空心轴强度相同,试确定其直径。并比较实心轴和空心轴的重量。并比较实心轴和空心轴的重量。解:解:当实心轴和空心轴的最大应力同当实心轴和空心轴的最大应力同 为为 时,两轴的许可扭矩分别为时,两轴的许可扭矩分别为311 16tTWD34342(1) (90) (1 0.944 ) 1616TD若两轴强度相等,则若两轴强度相等,则T T1 1=T=T2 2 ,于是有,于是有 3341(90) (1 0.944 )D 153
30、.10.0531Dmmm3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力224211(0.0531)22.2 1044DAm223232422()(90 10 )(85 10 ) 6.87 1044ADdm 在两轴长度相等,材料相同的情况下,两轴重量之比等于横截面面在两轴长度相等,材料相同的情况下,两轴重量之比等于横截面面积之比。积之比。42416.87 100.3122.2 10AA可见在载荷相同的条件下,空心轴的重量仅为实心轴的可见在载荷相同的条件下,空心轴的重量仅为实心轴的3131% % 。实心轴和空心轴横截面面积为实心轴和空心轴横截面面积为已知:已知:P P7.5kW, 7.5kW,
31、n n=100r/min,=100r/min,最大切应力最大切应力不不得超过得超过40MPa,40MPa,空心圆轴的内外直径之比空心圆轴的内外直径之比 = = 0.50.5。二轴长度相同。二轴长度相同。求求: : 实心轴的直径实心轴的直径d d1 1和空心轴的外直径和空心轴的外直径D D2 2;确;确定二轴的重量之比。定二轴的重量之比。解:解: 首先由轴所传递的功率计算作用在轴上的扭矩首先由轴所传递的功率计算作用在轴上的扭矩实心轴实心轴31616 716 20 045m=45mm40 10.d例题例题3.43.47 595499549716 2N m100.xPMTnmax13111640MP
32、aPTTWd3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力空心轴空心轴d20.5D2=23 mm324616 716 20 046m=46mm 1-40 10.Dmax234221640MPa1PTTWD3.4 3.4 圆轴扭转时的应力圆轴扭转时的应力确定实心轴与空心轴的重量之比确定实心轴与空心轴的重量之比长度相同的情形下,二轴的重量之比即为横截面面积之比:长度相同的情形下,二轴的重量之比即为横截面面积之比:28. 15 . 01110461045122332222121DdAA 实心轴实心轴d d1 1=45 mm=45 mm空心轴空心轴D D2 246 mm46 mmd d2 223 mm23 mmP P1 1=14kW, =14kW, P P2 2= = P P3 3= = P P1 1/2=7 kW/2=7 kWn n1 1= =n n2 2= 120r/min= 120r/min360r/minr/min12361203113zznn解:解:1 1、计算各轴的功
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华南欧式花园施工方案
- 文达咨询策划方案
- 校长在国旗下讲话:拒绝校园欺凌共筑和谐校园
- 绍兴人民医院供热燃气锅炉房建设项目
- 公文写作排版部分
- 地下室出租营销方案模板
- 农牧企业咨询培训方案
- 2025年注册会计师(CPA)考试战略管理科目模拟试题集
- 人力资源行业工艺流程与标准
- 2025自考专业(工商企业管理)考前冲刺练习试题及答案详解【考点梳理】
- 城西(蒋村)污水处理厂二期工程环评报告
- 中医养生保健服务(非医疗)操作规范 熏蒸
- 电子生物反馈治疗适应症
- 特斯拉MODEL Y用户手册
- 轨道几何形位参数轨距课件
- 临床麻醉学笔记
- 混凝土施工工艺质量控制与防治
- 造影剂外渗的个案护理
- 水池满水试验具体方案
- 实验室应急响应培训计划
- 秋冬季节预防流感
评论
0/150
提交评论