




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第10章含有耦合电感的电路有的电路互感和互感和互感电压互感电压有互感的电路的计算有互感的电路的计算变压器原理变压器原理理想变压器理想变压器耦合电感的功率耦合电感的功率第十章 有第10章含有耦合电感的电路10. 1 互感和互感电压一、一、 自感和自感电压自感和自感电压线性电感线性电感iL iutiLudd (self-inductance coefficient)自感系数自感系数+u11+u21i1 11 21N1N2i1,N1 Y Y11= N1 11 L1=Y Y11/i1第10章含有耦合电感的电路i1在线圈在线圈 N2 产生磁链产生磁链 Y Y21= N2 2121212iM 为线圈为线圈
2、2对对1的互感的互感i2,N2 Y Y22L2=Y Y22 / i2定义:定义: 为线圈为线圈1对对2的互感系数,单位的互感系数,单位 亨亨 (H)12121iM (mutual inductance coefficient)+u11+u21i1 11 21N1N2i2二二 . 互感和互感电压互感和互感电压1 . 互感:互感:第10章含有耦合电感的电路 当两个线圈都有电流时,每一线圈的磁链为当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和:自磁链与互磁链的代数和: 2121112111 iMiL 1212221222 iMiL+u11+u21i1 11 21N1N2i2第10章含有
3、耦合电感的电路 2. 互感的性质互感的性质 对于线性电感对于线性电感 M12=M21=M 互感系数互感系数 M 只与两个线圈的几何尺寸、匝数只与两个线圈的几何尺寸、匝数 、 相互位置和周围的介质磁导率有关,如其他条件不相互位置和周围的介质磁导率有关,如其他条件不变时,有变时,有M N1N2 (L N2)互感现象互感现象利用利用变压器:信号、功率传递变压器:信号、功率传递避免避免干扰干扰注意 第10章含有耦合电感的电路 3. 耦合系数耦合系数 (coupling coefficient)k:21defLLMk 212LLM K 1全耦合全耦合K = 1K = 0: 没有耦合没有耦合第10章含有耦
4、合电感的电路4. 互感电压互感电压产生互感电压产生互感电压产生自感电压产生自感电压变化变化 i1变化变化 1 1变化变化 21 dddd :12121tiMte 互互感感电电压压 dd 121tiMu i1 21+-u2 1第10章含有耦合电感的电路同名端同名端:当两个电流分别从两个线圈的对应端子流入:当两个电流分别从两个线圈的对应端子流入 ,其所,其所产生的磁场相互加强时,则这两个对应端子称为同名端。产生的磁场相互加强时,则这两个对应端子称为同名端。 ab+u21i1 21ai1b 21u21+ dd121tiMu dd121tiMu 方向方向a指向指向b方向方向b指向指向a 同名端表明了线
5、圈的相互绕法关系同名端表明了线圈的相互绕法关系*第10章含有耦合电感的电路 i1122*112233* 例例.注意:线圈的同名端必须两两确定。注意:线圈的同名端必须两两确定。三、由同名端及三、由同名端及 u , i 参考方向确定互感电压参考方向确定互感电压tiMudd121 tiMudd121 i1*u21+Mi1*u21+M第10章含有耦合电感的电路tiMtiLudddd2111 tiLtiMudddd2212 2111jjIMILU 2212jjILIMU i1*L1L2+_u1+_u2i2M*L1L2+_u1+_u2i2Mi1tiMtiLudddd2111 tiLtiMudddd2212
6、 时域形式时域形式:*j L1j L2+_j M1 U+_2 U1 I2 I在正弦交流电路中,在正弦交流电路中,其其相量形式相量形式的方程为的方程为i2第10章含有耦合电感的电路 同名端的实验测定:同名端的实验测定:i1122*R SV+电压表正偏。电压表正偏。0 , 0 22 dtdiMudtdi如图电路,当闭合开关如图电路,当闭合开关S时,时,i增加,增加,当两组线圈装在黑盒里,只引出四个端线组,要确定当两组线圈装在黑盒里,只引出四个端线组,要确定其同名端,就可以利用上面的结论来加以判断。其同名端,就可以利用上面的结论来加以判断。当断开当断开S时,如何判定?时,如何判定?第10章含有耦合电
7、感的电路tiMtiLudddd2111tiLtiMudddd2212tiMtiLudddd2111tiLtiMudddd2212例例写写出出图图示示电电路路电电压、压、电电流流关关系系式式i1*L1L2+_u1+_u2i2Mi1*L1L2+_u1+_u2i2Mi1*L1L2+_u1+_u2i2Mi1*L1L2+_u1+_u2i2M第10章含有耦合电感的电路例例21010i1/At/s)()(H,1,H2,H5,102211tutuMLLR和和求求已已知知ttttiMtu2 0s21 V10s 10 V10dd)(12解解ttttttiLiRtu2 0s21 V150 100s 10 V50 1
8、00dd)(111ttttti2 0s21 1020s 10 101MR1R2i1*L1L2+_u+_u2第10章含有耦合电感的电路10. 2 含耦合电感线圈的计算含耦合电感线圈的计算一、互感线圈的串联一、互感线圈的串联tiLRitiMLLiRRiRtiMtiLtiMtiLiRudddd)2()( dddddddd21212211 MLLLRRR2 2121 i*u2+MR1R2L1L2u1+u+iRLu+1. 同名端顺接同名端顺接第10章含有耦合电感的电路MLLLRRR2 2121 i*u2+MR1R2L1L2u1+u+iRLu+tiLRitiMLLiRRiRtiMtiLtiMtiLiRud
9、ddd)2()( dddddddd21212211 2. 同名端反接:同名端反接:第10章含有耦合电感的电路* 顺接一次,反接一次,就可以测出互感:顺接一次,反接一次,就可以测出互感:4反反顺顺LLM 互感的测量方法:互感的测量方法:MLLL2 21 顺顺MLLL2 21 反反)(2121LLM 互感不大于两个自感的算术平均值。互感不大于两个自感的算术平均值。0 第10章含有耦合电感的电路在正弦激励下:在正弦激励下:* )2(j)(2121IMLLIRRU1 Uj L1j L22 Uj M U I+R1+第10章含有耦合电感的电路 * I 1IR 1jIL jIM 2IR 2jIL jIM1
10、U2 U U I 1IR 1jIL jIM 2IR 2jIL jIM1 U2 U U相量图:相量图:(a) (a) 顺接顺接(b) (b) 反接反接1 Uj L1j L22 Uj M U I+R1+第10章含有耦合电感的电路1. 同名端在同侧同名端在同侧tiMtiLudddd211 tiMLLMLLudd2)(21221 0 2)(21221 MLLMLLLeqi = i1 +i2 解得解得u, i的关系:的关系:二、互感线圈的并联二、互感线圈的并联*Mi2i1L1L2ui+tiMtiLudddd122 故故21LLM 互感小于两元件自感的几何平均值。互感小于两元件自感的几何平均值。去耦等效电
11、路去耦等效电路Lequi+第10章含有耦合电感的电路2. 同名端在异侧同名端在异侧tiMtiLudddd211 tiMLLMLLudd2)(21221 0 2)(21221 MLLMLLLeqi = i1 +i2 解得解得u, i的关系:的关系:*Mi2i1L1L2ui+tiMtiLudddd122 去耦等效电路去耦等效电路Lequi+第10章含有耦合电感的电路三三. 互感电路的分析方法和计算举例互感电路的分析方法和计算举例1.互感消去法(去耦等效)互感消去法(去耦等效)*Mi2i1L1L2+_uidtdiMdtdiLu211 dtdiMdtdiLu122 dtdiMdtdiML 11)(dt
12、diMdtdiML 22)(画等效电路画等效电路i2 = i - i1i2i1L1- -ML2- -M+_uiMi1 = i - i2第10章含有耦合电感的电路同理可推得同理可推得*L1L2ML1+ML2+M- -M 上面方法同样适合于两个互感线圈所在的支路上面方法同样适合于两个互感线圈所在的支路只有一个公共节点情况只有一个公共节点情况L1- -ML2 - -MML1+ +ML2 + +M- -MM*ML1L2第10章含有耦合电感的电路二二. 受控源等效电路受控源等效电路2111 jj IMILU1222 jj IMILUj L11 I2 Ij L2+2 j IM1 j IM+2 U+1 U*
13、j L11 I2 Ij L2j M+2 U+1 U第10章含有耦合电感的电路三.计算举例:1. 已知电路如图,求入端阻抗已知电路如图,求入端阻抗 Z=?法一:端口加压求流法一:端口加压求流法二:去耦等效法二:去耦等效*L1L2MRCL1-ML2 -MMRC第10章含有耦合电感的电路M+_+_1SU2SU L1L2L3R1R2R31I2I3I支路电流法:支路电流法:2. 列写下图电路的方程。列写下图电路的方程。233332222 SUIRILjILjIR 213III 133331111 SUIRILjILjIR 2IMj 1IMj 第10章含有耦合电感的电路M+_+_1SU2SU L1L2L3
14、R1R2R31I2I3IaIbI回路电流法:回路电流法:1333311 )()(SbaUILjRILjRLjR bIMj 2333322 )()(SabUILjRILjRLjR aIMj (1) 不考虑互感不考虑互感(2) 考虑互感考虑互感注意注意: 互感线圈的互感电压表示式及正负号。互感线圈的互感电压表示式及正负号。含互感的电路,直接用节点法列写方程不方便。含互感的电路,直接用节点法列写方程不方便。第10章含有耦合电感的电路M12+_+_1SU2SU* M23M31L1L2L3R1R2R3bIaI回路法:回路法:1Sb23b12ba31a31b33a3311UIMjIMjIIMjIMjILj
15、RIRLjLjR)()()(2Sb23ba23a31a12a33b3322UIMjIIMjIMjIMjILjRIRLjLjR)()()(3.第10章含有耦合电感的电路此题可先作出去耦等效电路,再列方程此题可先作出去耦等效电路,再列方程(一对一对消一对一对消):M12* M23M13L1L2L3L1M12 +M23 M13 L2M12M23 +M13 L3+M12M23 M13 * M23M13L1L2L3M12+M12M12 M13L1L2L3M12 +M23 +M12 M23 M12 M23 第10章含有耦合电感的电路M+_+_SUocU L1L2R1R2。计计算算开开路路电电压压 OCU4
16、 已知已知:,6 , 6 , 5 , 102121VURRMLLS 求其戴维南等效电路。求其戴维南等效电路。+_ocUZ1+1U+2UIRIMjUUUOC221 AjRLjRUIS8 .39384. 08 .3962.1506101206211 Vj038 .39384. 0) 56( I第10章含有耦合电感的电路M L1L2R1R20I+_0U求内阻:求内阻:Zi(1)加压求流:)加压求流:列回路电流方程列回路电流方程aIbI0)(2121 bbaIMjIRILjRR0222)(UIMjIRILjRaab 2 .6808. 85 . 73,5 . 730000jIUZjUIIib第10章含有
17、耦合电感的电路M L1L2R1R2(2)去耦等效:)去耦等效:R1R2ML 1ML 2M 2 .6808.85 .735 .2352565)56()56()56)(56(5)()()(2112112jjjjjjjjjjMjRMLjRMjRMLjRMLjZi第10章含有耦合电感的电路小结小结: : 有互感电路的计算有互感电路的计算 在正弦稳态情况下,有互感的电路的计算在正弦稳态情况下,有互感的电路的计算仍应用前面介绍的相量分析方法。仍应用前面介绍的相量分析方法。 注意互感线圈上的电压除自感电压外,还注意互感线圈上的电压除自感电压外,还应包含互感电压。应包含互感电压。 一般采用支路法和回路法计算。
18、一般采用支路法和回路法计算。第10章含有耦合电感的电路10.3 10.3 耦合电感的功率耦合电感的功率* *j L11 I2 Ij L2j M+S UR1R2求图示电路的复功率求图示电路的复功率 例例S2111 j) j(UIMILR0)j(j 2221ILRIM*2*1S 11112 1(j)jSU IRL IMI I 第10章含有耦合电感的电路*221 22220j(j)SMI IRL I * *j L11 I2 Ij L2j M+S UR1R2 *21jIIM线圈线圈1中中互感电压耦合的复功率互感电压耦合的复功率*12jIIM线圈线圈2中中互感电压耦合的复功率互感电压耦合的复功率)()(
19、)()()()(*12*21bcdajbdacdjcjbaIIdadcjbdacdjcjbaII=P+jQ=-P+jQ第10章含有耦合电感的电路注意 两个互感电压耦合的复功率为虚部同号,而实部异号,两个互感电压耦合的复功率为虚部同号,而实部异号,这一特点是耦合电感本身的电磁特性所决定的这一特点是耦合电感本身的电磁特性所决定的; 耦合功率中的有功功率相互异号,表明有功功率从一耦合功率中的有功功率相互异号,表明有功功率从一个端口进入,必从另一端口输出,这是互感个端口进入,必从另一端口输出,这是互感M非耗能非耗能特性的体现。特性的体现。 耦合功率中的无功功率同号,表明两个互感电压耦耦合功率中的无功功
20、率同号,表明两个互感电压耦合功率中的无功功率对两个耦合线圈的影响、性质合功率中的无功功率对两个耦合线圈的影响、性质是相同的,是相同的,第10章含有耦合电感的电路10.4 10.4 变压器原理变压器原理变压器是利用互感来实现从一个电路向另一变压器是利用互感来实现从一个电路向另一个电路传输能量或信号的器件。个电路传输能量或信号的器件。 变压器由两个具有互感的线圈构成,一个线变压器由两个具有互感的线圈构成,一个线圈接向电源,另一线圈接向负载,当变压器圈接向电源,另一线圈接向负载,当变压器线圈的芯子为非铁磁材料时,称空心变压器。线圈的芯子为非铁磁材料时,称空心变压器。第10章含有耦合电感的电路第10章
21、含有耦合电感的电路*j L11 I2 Ij L2j M+S UR1R2Z=R+jXS2111 j- UIMIZ 0j2221 IZIM 1 空心变压器空心变压器 )(22211S1 ZMZUI 原边回路总抗阻原边回路总抗阻 Z11=R1+j L1付边回路总阻抗付边回路总阻抗 Z22=(R2+R)+j( L2+X)1 I+S UZ11222)(ZM原边等效电路原边等效电路222111Sin)( ZMZIUZ 2212jZIMI 第10章含有耦合电感的电路lllXRXRXMXRRMXRMZMZjjj)(22222222222222222222222222222 Zl= Rl+j Xl:副边反映在原
22、边回路中的阻抗(引入阻抗)。:副边反映在原边回路中的阻抗(引入阻抗)。*j L11 I2 Ij L2j M+S UR1R2Z=R+jX1 I+S UZ11222)(ZM原边等效电路原边等效电路2222222222XRRMRl引入电阻。恒为正引入电阻。恒为正 , , 表示副边回路表示副边回路吸收的功率是靠原边供给的。吸收的功率是靠原边供给的。2222222222XRXMXl引入电抗。引入电抗。负号反映了引入电抗负号反映了引入电抗与付边电抗的性质相反。与付边电抗的性质相反。第10章含有耦合电感的电路引入阻抗反映了副边回路对原边回路的影响。引入阻抗反映了副边回路对原边回路的影响。原副边虽然没有电的联
23、接,但互感的作用使副边产原副边虽然没有电的联接,但互感的作用使副边产生电流,这个电流又影响原边电流电压。生电流,这个电流又影响原边电流电压。能量分析能量分析电源发出有功电源发出有功 P= I12(R1+Rl)I12R1 消耗在原边;消耗在原边;I12Rl 消耗在付边消耗在付边*j L11 I2 Ij L2j M+S UR1R2Z=R+jX第10章含有耦合电感的电路例例 已知已知 US=20 V , 原边等效电路的引入阻抗原边等效电路的引入阻抗 Zl=10j10 .求求: ZX 并求负载获得的有功功率并求负载获得的有功功率.101010j42222jZZMZXl 8 . 9 j2 . 01010
24、104 jjZX此时负载获得的功率:此时负载获得的功率: W101010202 lRRPP)(引引 W104 , *2S11 RUPZZl实际是最佳匹配:实际是最佳匹配:解:解:*j10 2 Ij10 j2+S U10 ZX+S U10+j10 Zl=10j10 第10章含有耦合电感的电路2111 j j IMILU1222 j j IMILU10. 5 10. 5 理想变压器理想变压器*j L11 I2 Ij L2j M+2 U+1 UMILUIj j2221 21222211j)j(UMLIMILUMLU1, : 21 kLLM全全耦耦合合时时22221ULMULL 一一.全耦合变压器全耦
25、合变压器 (transformer)第10章含有耦合电感的电路221121 112211 22 N1N2u1u2i1i2tddNutddNu222111, 2121NNuu n nLLLMMLNNuu 21212121则则:21222211j)j(UMLIMILUMLU 22221ULMULL 第10章含有耦合电感的电路磁导率磁导率m m ,L1 ,M, L2 ,L1/L2 比值不变比值不变 , 则有则有二二. 理想变压器理想变压器 (ideal transformer): 21UnU 211InI *1 I2 I+2 U+1 Un : 1理想变压器的元件特性理想变压器的元件特性理想变压器的电
26、路模型理想变压器的电路模型 21UnU 211211112111InLjUILjMjLjULjIMjUI 全耦合变压器的电压、电流关系:全耦合变压器的电压、电流关系:第10章含有耦合电感的电路ZnIUnInUnIU22222211)( /1 (a) 阻抗变换阻抗变换理想变压器的性质:理想变压器的性质:*1 I2 I+2 U+1 Un : 1Z1 I+1 Un2Z第10章含有耦合电感的电路 (b) 功率功率理想变压器的特性方程为代数关系,因此无记忆作用。理想变压器的特性方程为代数关系,因此无记忆作用。 21nuu 211ini *+n : 1u1i1i2+u20)(111112211 niuni
27、uiuiup由此可以看出,理想变压器既不储能,也不耗能,在由此可以看出,理想变压器既不储能,也不耗能,在电路中只起传递信号和能量的作用。电路中只起传递信号和能量的作用。第10章含有耦合电感的电路例例1.已知电阻已知电阻RS=1k ,负载电阻,负载电阻RL=10 。为使。为使RL上获得最大功率,求理想变压器的变比上获得最大功率,求理想变压器的变比n。*n : 1RL+uSRSn2RL+uSRS当当 n2RL=RS时匹配,即时匹配,即10n2=1000 n2=100, n=10 .第10章含有耦合电感的电路例例2.1 I2 I*+2 U+1 U1 : 1050 +V010o 1 .2 U求求方法方
28、法1:列方程:列方程 10121UU 2110II o110101 UI2250 IU 解得解得V033.33o2 U第10章含有耦合电感的电路方法方法2:阻抗变换:阻抗变换V0100 10o1oc UU0 , 012 II1 I2150)101(2 +1 U+V010o 1 V 0310212/11010oo1 UV033.33 10o12 UU方法方法3:戴维南等效:戴维南等效1 I2 I*+oc U+1 U1 : 10+V010o 1 :ocU求求第10章含有耦合电感的电路求求R0:*1 : 101 R0R0=102 1=100 戴维南等效电路:戴维南等效电路:+2 U+V0100o 1
29、00 50 V033.3350501000100oo2 U第10章含有耦合电感的电路小结:小结:空心变压器空心变压器:电路参数:电路参数 L1、L2、M, 储能。储能。理想变压器理想变压器:电路参数:电路参数 n, 不耗能、不储能、不耗能、不储能、 变压、变流、变阻抗变压、变流、变阻抗Z11Z引入引入n2Z2铁心变压器铁心变压器:电路参数:电路参数 L1, L2, n, M , R1, R2 .第10章含有耦合电感的电路第八、九、十、 十一章 正弦稳态电路正弦稳态电路 正弦量的相量表示法正弦量的相量表示法相量法求解正弦稳态电路相量法求解正弦稳态电路谐振谐振电路电路正弦稳态电路的功率正弦稳态电路
30、的功率相量图辅助求解正弦稳态电路相量图辅助求解正弦稳态电路有耦合电感的电路有耦合电感的电路第10章含有耦合电感的电路11.2 11.2 串联电路的谐振串联电路的谐振 当当 ,L, C 满足一定条件,恰好使满足一定条件,恰好使XL=|XC| , = 0,电路中电压、电流出现同相,电路的这种电路中电压、电流出现同相,电路的这种状态称为状态称为谐振谐振。|)( j)1( jZXXRCLRZCL IRj L+_Cj1 U第10章含有耦合电感的电路谐振时谐振时一、串联谐振的条件一、串联谐振的条件1. L C 不变,改变不变,改变 2. 电源频率不变,改变电源频率不变,改变 L 或或 C ( 常改变常改变
31、C ),使,使 XL=|XC| 。谐振角频率谐振角频率 (resonant angular frequency)LC10 谐振频率谐振频率 (resonant frequency) LCf210 CL001 IRj L+_Cj1 U第10章含有耦合电感的电路二、二、RLC串联谐振的特征串联谐振的特征Z=RX=0最小RXRZ22三、参数三、参数1. 特性阻抗特性阻抗 (characteristic impedance)单位:单位: CLCL 001 2. 品质因数品质因数(quality factor)无量纲无量纲CLRRCRLRQ1100 1cos,0 0Q 无功IZU U 一定,则一定,则
32、I 最大;最大;I 一定,则一定,则 U 最小最小 IRj L+_Cj1 U第10章含有耦合电感的电路四四 . 谐振时元件上的电压谐振时元件上的电压RIUUR QUCIUCjj0 QULIULjj0 LU CU RU I谐振时的相量图谐振时的相量图串联谐振又称串联谐振又称电压谐振电压谐振 IRj L+_Cj1 U+- -LU+- -CU+- -RU0UUUXCL 相当于短路相当于短路第10章含有耦合电感的电路tICLtCItUuCC cos)90 sin()90 sin(momom tUu sinm 设设tItRUi sin sinmm 则则tLILiwL sin212122m2 磁场能量磁场
33、能量2m2m2121CCLCULIwwW 总总+_PQLCRuiuC+- -电场能量电场能量221CCCuw tLI cos2122m tCU cos2122Cm 五、串联谐振时的电磁场能量五、串联谐振时的电磁场能量第10章含有耦合电感的电路iuCwLwCW总 电感和电容能量按正弦规律变化,最大值相等电感和电容能量按正弦规律变化,最大值相等 WLm=WCm。L、C的电场能量和磁场能量作周期振荡性的交换,而不的电场能量和磁场能量作周期振荡性的交换,而不与电源进行能量交换。与电源进行能量交换。总能量是不随时间变化的常量,且等于总能量是不随时间变化的常量,且等于电感或电容电感或电容能量能量最大值。最
34、大值。第10章含有耦合电感的电路电感电容储能的总值与品质因数的关系:电感电容储能的总值与品质因数的关系:Q是反映谐振回路中是反映谐振回路中电磁振荡程度电磁振荡程度的量的量2m22m2121UCQCUWC 总总RLQ0 2m2m02121RILI 022m212TRILI 消消耗耗的的能能量量谐谐振振时时一一个个周周期期内内电电路路能能量量谐谐振振时时电电路路中中电电磁磁场场总总 2 第10章含有耦合电感的电路谐振时的功率谐振时的功率P=UIcosUIRI02=U2/R,电源向电路输送电阻消耗的功率,电阻功率达最大。电源向电路输送电阻消耗的功率,电阻功率达最大。0sinCLQQUIQ200200
35、2001 , LIICQLIQCL 电源不向电路输送电源不向电路输送无功。电感中的无功与电无功。电感中的无功与电容中的无功大小相等,互容中的无功大小相等,互相补偿,彼此进行能量交相补偿,彼此进行能量交换。换。注意 +_PQLCRui第10章含有耦合电感的电路例例某收音机输入回路某收音机输入回路 L=0.3mH,R=10,为收到,为收到中央电台中央电台560kHz信号,求:信号,求:( (1) )调谐电容调谐电容C值;值;( (2) ) 如输入电压为如输入电压为1.5mV, ,求谐振电流和此时的求谐振电流和此时的电容电压。电容电压。A 15. 0105 . 1 )2(0RUIpF269) 2(1
36、 ) 1 (2LfC解解V 5 . 1V 5 .1580CCXIUURLQUUo0Cr +_LCRu第10章含有耦合电感的电路例例 一接收器的电路参数为一接收器的电路参数为:U=10V =5103 rad/s, 调调C使电路中的使电路中的电流最大电流最大,Imax=200mA,测得测得电容电压为电容电压为600V,求求R、L、C及及Q。解解 50102001030IUR6010600UUQQUUCCmH601056050 30RQLF67. 61C 2 0 L+_LCRuV第10章含有耦合电感的电路RLC串联谐振电路的谐振曲线和选择性串联谐振电路的谐振曲线和选择性一一. 阻抗频率特性阻抗频率特
37、性RCL 1tg)(1 )(| )(|)1( jZCLRZ 22)1(| )(|CLRZ 幅频幅频特性特性相频相频特性特性X( )|Z( )|XL( )XC( )R 0 | Z ( ) |0阻抗幅频特性阻抗幅频特性 ( ) 0 0 /2 /2阻抗相频特性阻抗相频特性第10章含有耦合电感的电路二二. 电流谐振曲线电流谐振曲线谐振曲线:表明电压、电流与频率的关系。谐振曲线:表明电压、电流与频率的关系。幅值关系:幅值关系:UYCLRUI| )(|)1()(22 电流谐振曲线电流谐振曲线I( )I( )U/R 0 0|Y( )|1/R IRj L+_Cj1 U+- -LU+- -CU+- -RU第10
38、章含有耦合电感的电路三三. 通用谐振曲线通用谐振曲线Q=0.5Q=1Q=101)()(0 II00 1Q越大,谐振曲线越尖。越大,谐振曲线越尖。电路对非谐振频率下的电路对非谐振频率下的电流具有较强的抑制能电流具有较强的抑制能力,所以选择性好。力,所以选择性好。Q是反映谐振电路性质的一个重要指标。是反映谐振电路性质的一个重要指标。 从多频率的信号从多频率的信号中选出中选出 0 的那个信号的那个信号,即,即选择性选择性。第10章含有耦合电感的电路一、简单一、简单 G、C、L 并联电路并联电路对偶:对偶:R L C 串联串联G C L 并联并联LC10 )1( jCLRZ )1( jLCGY 11.4 11.4 并联电路的谐振并联电路的谐振+_S IGCL ULC10 IRj L+_Cj1 U+- -LU+- -CU+- -RU第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024成都师范学院辅导员招聘笔试真题
- 2025年抗肝片吸虫病药合作协议书
- 2025年空气和废气监测仪器项目合作计划书
- 2025年湖南省退役军人事务厅下属事业单位招聘考试笔试试题【答案】
- 2025年江西省农业农村厅下属事业单位招聘考试笔试试题【答案】
- 2025年教师招聘考试教育综合理论知识复习题库(300题)【答案】
- 2025年印刷品、记录媒介复制品合作协议书
- 项目投资管理制度 (一)
- 课堂教学效益年活动开展情况汇报
- 消防值班制度
- 2025江苏省惠隆资产管理限公司招聘30人易考易错模拟试题(共500题)试卷后附参考答案
- 籍贯对照表完整版
- 2022年北京公共交通控股(集团)有限公司招聘笔试试题及答案解析
- 压力管道基础知识(管理类)
- 气体灭火系统验收表1
- 新北师大版六年级上册数学全册教学课件
- DB1309T 256-2021 榆三节叶蜂综合防治技术规程
- 土木工程概论全套课件完整版电子教案最新板
- 超星尔雅学习通《声光影的内心感动电影视听语言(四川大学)》章节测试答案
- 燃气工程计价规则及定额应用
- 上教社深圳版小学英语1-6年级单词汇总
评论
0/150
提交评论