[数学]人教版高中数学选修21全套教案_第1页
[数学]人教版高中数学选修21全套教案_第2页
[数学]人教版高中数学选修21全套教案_第3页
[数学]人教版高中数学选修21全套教案_第4页
[数学]人教版高中数学选修21全套教案_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章 圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程2.1.2求曲线的轨迹方程(一)复习引入大家知道,平面解析几何研究的主要问题是:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析(二)几种常见求轨迹方程的方法1直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点p的

2、轨迹方程;(2)过点a(a,o)作圆ox2+y2=r2(aro)的割线,求割线被圆o截得弦的中点的轨迹对(1)分析:动点p的轨迹是不知道的,不能考查其几何特征,但是给出了动点p的运动规律:|op|=2r或|op|=0解:设动点p(x,y),则有|op|=2r或|op|=0即x2+y2=4r2或x2+y2=0故所求动点p的轨迹方程为x2+y2=4r2或x2+y2=0对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数由学生演板完成,解答为:设弦的中点为m(x,y),连结om,则omamkom·kam

3、=-1,其轨迹是以oa为直径的圆在圆o内的一段弧(不含端点)2定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件直平分线l交半径oq于点p(见图245),当q点在圆周上运动时,求点p的轨迹方程分析:点p在aq的垂直平分线上,|pq|=|pa|又p在半径oq上|po|+|pq|=r,即|po|+|pa|=r故p点到两定点距离之和是定值,可用椭圆定义写出p点的轨迹方程解:连接pa lpq,|pa|=|pq|又p在半径oq上|po|+|p

4、q|=2由椭圆定义可知:p点轨迹是以o、a为焦点的椭圆3相关点法若动点p(x,y)随已知曲线上的点q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将q点坐标表达式代入已知曲线方程,即得点p的轨迹方程这种方法称为相关点法(或代换法)例3 已知抛物线y2=x+1,定点a(3,1)、b为抛物线上任意一点,点p在线段ab上,且有bppa=12,当b点在抛物线上变动时,求点p的轨迹方程分析:p点运动的原因是b点在抛物线上运动,因此b可作为相关点,应先找出点p与点b的联系解:设点p(x,y),且设点b(x0,y0)bppa=12,且p为线段ab的内分点4待定系数法求圆、椭圆、双曲线以及抛物线的

5、方程常用待定系数法求例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根=1664-4q4b2=0,即a2=2b(以下由学生完成)由弦长公式得:即a2b2=4b2-a2(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果练习题用一小黑板给出1abc一边的两个端点是b(0,6)和c(0,-6),另两边斜率的2点p与一定点f(2,0)的距离和它到一定直线x=8的距

6、离的比是12,求点p的轨迹方程,并说明轨迹是什么图形?3求抛物线y2=2px(p0)上各点与焦点连线的中点的轨迹方程答案:义法)由中点坐标公式得:(2)新课讲授过程(i)由上述探究过程容易得到椭圆的定义板书把平面内与两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆(ellipse)其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距即当动点设为时,椭圆即为点集(ii)椭圆标准方程的推导过程提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系 无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理 设参量的意义:第

7、一、便于写出椭圆的标准方程;第二、的关系有明显的几何意义 类比:写出焦点在轴上,中心在原点的椭圆的标准方程(iii)例题讲解与引申例1 已知椭圆两个焦点的坐标分别是,并且经过点,求它的标准方程分析:由椭圆的标准方程的定义及给出的条件,容易求出引导学生用其他方法来解另解:设椭圆的标准方程为,因点在椭圆上,则例2 如图,在圆上任取一点,过点作轴的垂线段,为垂足当点在圆上运动时,线段的中点的轨迹是什么?分析:点在圆上运动,由点移动引起点的运动,则称点是点的伴随点,因点为线段的中点,则点的坐标可由点来表示,从而能求点的轨迹方程引申:设定点,是椭圆上动点,求线段中点的轨迹方程解法剖析:(代入法求伴随轨迹

8、)设,;(点与伴随点的关系)为线段的中点,;(代入已知轨迹求出伴随轨迹),点的轨迹方程为;伴随轨迹表示的范围例3如图,设,的坐标分别为,直线,相交于点,且它们的斜率之积为,求点的轨迹方程分析:若设点,则直线,的斜率就可以用含的式子表示,由于直线,的斜率之积是,因此,可以求出之间的关系式,即得到点的轨迹方程解法剖析:设点,则,;代入点的集合有,化简即可得点的轨迹方程引申:如图,设的两个顶点,顶点在移动,且,且,试求动点的轨迹方程引申目的有两点:让学生明白题目涉及问题的一般情形;当值在变化时,线段的角色也是从椭圆的长轴圆的直径椭圆的短轴 情感、态度与价值观目标通过作图展示与操作,必须让学生认同:圆

9、、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;必须让学生认同与体会:椭圆的定义及特殊情形当常数等于两定点间距离时,轨迹是线段;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,及引入参量的意义,培养学生用对称的美学思维来体现数学的和谐美;让学生认同与领悟:例1使用定义解题是首选的,但也可以用其他方法来解,培养学生从定义的角度思考问题的好习惯;例2是典型的用代入法求动点的伴随点的轨迹,培养学生的辩证思维方法,会用分析、联系的观点解决问题;通过例3培养学生的对问题引申、分段讨论的思维品质能力目标(1) 想象与归纳能力:能根据课程的内容能想象日常生活中哪些是椭

10、圆、双曲线和抛物线的实际例子,能用数学符号或自然语言的描述椭圆的定义,能正确且直观地绘作图形,反过来根据图形能用数学术语和数学符号表示(2) 思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力(4) 数学活动能力:培养学生观察、实验、探究、验证与交流等数学活动能力(5) 创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径12椭圆的简单几何性质(ii)椭圆的简单

11、几何性质 范围:由椭圆的标准方程可得,进一步得:,同理可得:,即椭圆位于直线和所围成的矩形框图里;对称性:由以代,以代和代,且以代这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以轴和轴为对称轴,原点为对称中心;顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;离心率: 椭圆的焦距与长轴长的比叫做椭圆的离心率(),; (iii)例题讲解与引申、扩展例4 求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标分析:由椭圆的方程化为标准方程,容易求出引导学生用椭圆的长轴

12、、短轴、离心率、焦点和顶点的定义即可求相关量扩展:已知椭圆的离心率为,求的值解法剖析:依题意,但椭圆的焦点位置没有确定,应分类讨论:当焦点在轴上,即时,有,得;当焦点在轴上,即时,有,例5 如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分过对对称的截口是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于另一个焦点上,由椭圆一个焦点发出的光线,经过旋转椭圆面反射后集中到另一个焦点已知,建立适当的坐标系,求截口所在椭圆的方程解法剖析:建立适当的直角坐标系,设椭圆的标准方程为,算出的值;此题应注意两点:注意建立直角坐标系的两个原则;关于的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来

13、决定引申:如图所示, “神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心为一个焦点的椭圆,近地点距地面,远地点距地面,已知地球的半径建立适当的直角坐标系,求出椭圆的轨迹方程例6如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程分析:若设点,则,到直线:的距离,则容易得点的轨迹方程引申:(用几何画板探究)若点与定点的距离和它到定直线:的距离比是常数,则点的轨迹方程是椭圆其中定点是焦点,定直线:相应于的准线;由椭圆的对称性,另一焦点,相应于的准线:补充: 1.课题:双曲线第二定义1椭圆的长轴长为 18 ,短轴长为 6 ,半焦距为,离心率为,焦点坐标为,顶点坐标为

14、,(准线方程为).2短轴长为8,离心率为的椭圆两焦点分别为、,过点作直线交椭圆于a、b两点,则的周长为 20 .引入课题【习题4(教材p50例6)】椭圆的方程为,m1,m2为椭圆上的点 求点m1(4,2.4)到焦点f(3,0)的距离 2.6 . 若点m2为(4,y0)不求出点m2的纵坐标,你能求出这点到焦点f(3,0)的距离吗?解:且代入消去得【推广】你能否将椭圆上任一点到焦点的距离表示成点m横坐标的函数吗?解:代入消去 得问题1:你能将所得函数关系叙述成命题吗?(用文字语言表述)椭圆上的点m到右焦点的距离与它到定直线的距离的比等于离心率问题2:你能写出所得命题的逆命题吗?并判断真假?(逆命题

15、中不能出现焦点与离心率)动点到定点的距离与它到定直线的距离的比等于常数的点的轨迹是椭圆【引出课题】椭圆的第二定义当点与一个定点的距离和它到一条定直线的距离的比是常数时,这个点的轨迹是椭圆定点是椭圆的焦点,定直线叫做椭圆的准线,常数是椭圆的离心率对于椭圆,相应于焦点的准线方程是根据对称性,相应于焦点的准线方程是对于椭圆的准线方程是可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义由椭圆的第二定义可得:右焦半径公式为;左焦半径公式为典型例题例1、求椭圆的右焦点和右准线;左焦点和左准线;解:由题意可知右焦点右准线;左焦点和左准线变式:求椭圆方程的准线方程;解:椭圆

16、可化为标准方程为:,故其准线方程为小结:求椭圆的准线方程一定要化成标准形式,然后利用准线公式即可求出例2、椭圆上的点到左准线的距离是,求到左焦点的距离为 .变式:求到右焦点的距离为 .解:记椭圆的左右焦点分别为到左右准线的距离分别为由椭圆的第二定义可知:又由椭的第一定义可知:另解:点m到左准线的距离是2.5,所以点m到右准线的距离为小结:椭圆第二定义的应用和第一定义的应用例1、 点p与定点a(2,0)的距离和它到定直线的距离的比是1:2,求点p的轨迹;解法一:设为所求轨迹上的任一点,则由化简得,故所的轨迹是椭圆。解法二:因为定点a(2,0)所以,定直线所以解得,又因为故所求的轨迹方程为变式:点

17、p与定点a(2,0)的距离和它到定直线的距离的比是1:2,求点p的轨迹;分析:这道题目与刚才的哪道题目可以说是同一种类型的题目,那么能否用上面的两种方法来解呢?解法一:设为所求轨迹上的任一点,则由化简得配方得,故所的轨迹是椭圆,其中心在(1,0)解法二:因为定点a(2,0)所以,定直线所以解得,故所求的轨迹方程为问题1:求出椭圆方程和的长半轴长、短半轴长、半焦距、离心率;问题2:求出椭圆方程和长轴顶点、焦点、准线方程;解:因为把椭圆向右平移一个单位即可以得到椭圆所以问题1中的所有问题均不变,均为长轴顶点、焦点、准线方程分别为:,;长轴顶点、焦点、准线方程分别为:,;反思:由于是标准方程,故只要

18、有两上独立的条件就可以确定一个椭圆,而题目中有三个条件,所以我们必须进行检验,又因为另一方面离心率就等于这是两上矛盾的结果,所以所求方程是错误的。又由解法一可知,所求得的椭圆不是标准方程。小结:以后有涉及到“动点到定点的距离和它到定直线的距离的比是常数时”最好的方法是采用求轨迹方程的思路,但是这种方法计算量比较大;解法二运算量比较小,但应注意到会不会是标准方程,即如果三个数据可以符合课本例4的关系的话,那么其方程就是标准方程,否则非标准方程,则只能用解法一的思维来解。例4、设ab是过椭圆右焦点的弦,那么以ab为直径的圆必与椭圆的右准线( )a.相切 b.相离 c.相交 d.相交或相切分析:如何

19、判断直线与圆的位置关系呢?解:设ab的中点为m,则m即为圆心,直径是|ab|;记椭圆的右焦点为f,右准线为;过点a、b、m分别作出准线的垂线,分别记为由梯形的中位线可知又由椭圆的第二定义可知即又且故直线与圆相离例5、已知点为椭圆的上任意一点,、分别为左右焦点;且求的最小值分析:应如何把表示出来解:左准线:,作于点d,记由第二定义可知: 故有所以有当a、m、d三点共线时,|ma|+|md|有最小值:即的最小值是变式1:的最小值;解:f1amd变式2:的最小值;解:思考:1方程表示什么曲线?解:;即方程表示到定点的距离与到定直线的距离的比常数(且该常数小于1)方程表示椭圆例、(06四川高考15)如

20、图把椭圆的长轴ab分成8等分,过每个等分点作轴的垂线交椭圆的上半部分于七个点,f是椭圆的一个焦点,则=解法一:,设的横坐标为,则不妨设其焦点为左焦点由得解法二:由题意可知和关于轴对称,又由椭圆的对称性及其第一定义可知,同理可知,故2. 椭圆中焦点三角形的性质及应用定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。性质一:已知椭圆方程为两焦点分别为设焦点三角形中则。性质二:已知椭圆方程为左右两焦点分别为设焦点三角形,若最大,则点p为椭圆短轴的端点。证明:设,由焦半径公式可知:,在中, = 性质三:已知椭圆方程为两焦点分别为设焦点三角形中则证明:设则在中,由余弦定理得: 命题得证。(200

21、0年高考题)已知椭圆的两焦点分别为若椭圆上存在一点使得求椭圆的离心率的取值范围。简解:由椭圆焦点三角形性质可知即 ,于是得到的取值范围是性质四:已知椭圆方程为两焦点分别为设焦点三角形,则椭圆的离心率。 由正弦定理得:由等比定理得:而, 。已知椭圆的焦点是f1(1,0)、f2(1,0),p为椭圆上一点,且f1f2是pf1和pf2的等差中项(1)求椭圆的方程;(2)若点p在第三象限,且pf1f2120°,求tanf1pf2解:(1)由题设2f1f2pf1pf22a,又2c2,b 椭圆的方程为1(2)设f1pf2,则pf2f160°椭圆的离心率 则,整理得:5sin(1cos)故

22、,tanf1pf2tan(2)新课讲授过程(i)由上述探究过程容易得到双曲线的定义板书把平面内与两个定点,的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线(hyperbola)其中这两个定点叫做双曲线的焦点,两定点间的距离叫做双曲线的焦距即当动点设为时,双曲线即为点集(ii)双曲线标准方程的推导过程提问:已知椭圆的图形,是怎么样建立直角坐标系的?类比求椭圆标准方程的方法由学生来建立直角坐标系 无理方程的化简过程仍是教学的难点,让学生实际掌握无理方程的两次移项、平方整理的数学活动过程 类比椭圆:设参量的意义:第一、便于写出双曲线的标准方程;第二、的关系有明显的几何意义 类比:写出焦点在轴上

23、,中心在原点的双曲线的标准方程(iii)例题讲解、引申与补充例1 已知双曲线两个焦点分别为,双曲线上一点到,距离差的绝对值等于,求双曲线的标准方程分析:由双曲线的标准方程的定义及给出的条件,容易求出补充:求下列动圆的圆心的轨迹方程: 与:内切,且过点; 与:和:都外切; 与:外切,且与:内切解题剖析:这表面上看是圆与圆相切的问题,实际上是双曲线的定义问题具体解:设动圆的半径为 与内切,点在外,因此有,点的轨迹是以、为焦点的双曲线的左支,即的轨迹方程是; 与、均外切,因此有,点的轨迹是以、为焦点的双曲线的上支,的轨迹方程是; 与外切,且与内切,因此,点的轨迹是以、为焦点的双曲线的右支,的轨迹方程

24、是例2 已知,两地相距,在地听到炮弹爆炸声比在地晚,且声速为,求炮弹爆炸点的轨迹方程分析:首先要判断轨迹的形状,由声学原理:由声速及,两地听到爆炸声的时间差,即可知,两地与爆炸点的距离差为定值由双曲线的定义可求出炮弹爆炸点的轨迹方程 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚已知各观察点到该中心的距离都是试确定该巨响发生的位置(假定当时声音传播的速度为;相关点均在同一平面内)解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚,则巨响应在以这两个观察点为焦点的双曲

25、线上如图,以接报中心为原点,正东、正北方向分别为轴、轴方向,建立直角坐标系,设、分别是西、东、北观察点,则, 设为巨响发生点,、同时听到巨响,所在直线为,又因点比点晚听到巨响声,由双曲线定义知,点在双曲线方程为联立、求出点坐标为即巨响在正西北方向处探究:如图,设,的坐标分别为,直线,相交于点,且它们的斜率之积为,求点的轨迹方程,并与§21例3比较,有什么发现?探究方法:若设点,则直线,的斜率就可以用含的式子表示,由于直线,的斜率之积是,因此,可以求出之间的关系式,即得到点的轨迹方程222双曲线的简单几何性质(2)新课讲授过程(i)通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的

26、几何性质提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质 (ii)双曲线的简单几何性质 范围:由双曲线的标准方程得,进一步得:,或这说明双曲线在不等式,或所表示的区域;对称性:由以代,以代和代,且以代这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以轴和轴为对称轴,原点为对称中心;顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴

27、叫做实轴,焦点不在的对称轴叫做虚轴;渐近线:直线叫做双曲线的渐近线;离心率: 双曲线的焦距与实轴长的比叫做双曲线的离心率()(iii)例题讲解与引申、扩展例3 求双曲线的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程分析:由双曲线的方程化为标准方程,容易求出引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在轴上的渐近线是扩展:求与双曲线共渐近线,且经过点的双曲线的标准方及离心率解法剖析:双曲线的渐近线方程为焦点在轴上时,设所求的双曲线为,点在双曲线上,无解;焦点在轴上时,设所求的双曲线为,点在双曲线上,因此,所求双曲线的标准方程为,离心率这个

28、要进行分类讨论,但只有一种情形有解,事实上,可直接设所求的双曲线的方程为例4 双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小半径为,上口半径为,下口半径为,高为试选择适当的坐标系,求出双曲线的方程(各长度量精确到)解法剖析:建立适当的直角坐标系,设双曲线的标准方程为,算出的值;此题应注意两点:注意建立直角坐标系的两个原则;关于的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定引申:如图所示,在处堆放着刚购买的草皮,现要把这些草皮沿着道路或送到呈矩形的足球场中去铺垫,已知,能否在足球场上画一条“等距离”线,在“等距离”线的两侧的区域应该选择怎样

29、的线路?说明理由解题剖析:设为“等距离”线上任意一点,则,即(定值),“等距离”线是以、为焦点的双曲线的左支上的一部分,容易“等距离”线方程为理由略例5 如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程分析:若设点,则,到直线:的距离,则容易得点的轨迹方程引申:用几何画板探究点的轨迹:双曲线若点与定点的距离和它到定直线:的距离比是常数,则点的轨迹方程是双曲线其中定点是焦点,定直线:相应于的准线;另一焦点,相应于的准线:补充: 3.课题:双曲线第二定义教学目标:1111111111111111111一、复习引入: 1、 (1)、双曲线的定义:平面上到两定点距离之差的绝对值等于常数

30、(小于)的点的轨迹叫做双曲线.定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。(2)、双曲线的标准方程:焦点在x轴: 焦点在y轴: 其中2、 对于焦点在x轴上的双曲线的有关性质:(1)、焦点:f1(-c,0),f2(c,0);(2)、渐近线:;(3)、离心率:>13、今节课我们来学习双曲线的另一定义。(板书课题:双曲线第二定义)二、新课教学: f2f1hhxoy1、引例(课本p64例6):点m(x,y) 与定点f(5,0)距离和它到定直线的距离之比是常数,求点m的轨迹方程.分析:利用求轨迹方程的方法。解:设是点m到直线的距离,根据题意,所求轨迹就是集合p=m|, 即 所以,点m的轨迹

31、是实轴、虚轴长分别为8、6的双曲线。由例6可知:定点f(5,0)为该双曲线的焦点,定直线为,常数为离心率>1.提出问题:(从特殊到一般)将上题改为:点m(x,y)与定点f(c,0)距离和它到定直线的距离之比是常数,求点m的轨迹方程。解:设是点m到直线的距离, 根据题意,所求轨迹就是集合p=m|, 即 化简得两边同时除以得2、小结: 双曲线第二定义:当动点m(x,y) 到一定点f(c,0)的距离和它到一定直线的距离之比是常数时,这个动点m(x,y)的轨迹是双曲线。其中定点f(c,0)是双曲线的一个焦点,定直线叫双曲线的一条准线,常数e是双曲线的离心率。双曲线上任一点到焦点的线段称为焦半径。

32、例如pf是双曲线的焦半径。(p65思考)与椭圆的第二定义比较,你有什么发现?(让学生讨论)答:只是常数的取值范围不同,椭圆的,而双曲线的.三、课堂练习1 求的准线方程、两准线间的距离。 解:由可知,焦点在x轴上,且所以准线方程为:;故两准线的距离为.2、(2006年广东高考第8题选择题)已知双曲线 3x 2y 2 = 9,则双曲线右支上的点 p 到右焦点的距离与点 p 到右准线的距离之比等于( )。(a) (b) (c) 2(d) 4解:3、如果双曲线上的一点p到左焦点的距离为9,则p到右准线的距离是 解: p到左准线的距离为m,由双曲线方程可知a=5,b=12,c=13,准线方程为 根据双曲

33、线第二定义得, 。4、双曲线两准线把两焦点连线段三等分,求e. 解:由题意可知,即 所以5. 双曲线的 ,渐近线与一条准线围成的三角形的面积是 . 解:由题意可知,一条准线方程为:,渐近线方程为 因为当时 所以所求的三角形面积为: 四、巩固练习:1已知双曲线= 1(a0,b0)的右焦点为f,右准线与一条渐近线交于a,oaf面积为(o为原点),则两条渐近线夹角为( )a30°b45°c60°d90°解:由题意可得,oaf 的底边|oc|=c,高h= soaf=因此可知该双曲线为等轴双曲线。所以两条渐近线夹角为90°。2.pphhf2xf1oya

34、。42.4抛物线在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.通过提问来激发学生的探究欲望,首先研究抛物线的定义,教师可以用直观的教具叫学生参与进行演示,再由学生归纳出抛物线的定义(2) 抛物线的标准方程设定点f到定直线l的距离为p(p为已知数且大于0)下面,我们来求抛物线的方程怎样选择直角坐标系,才能使所得的方程取较简单的形式呢?让学生议论一下,教师巡视,启发辅导,最后简单小结建立直角坐标系的方案方案1:(由第一组

35、同学完成,请一优等生演板)以l为y轴,过点f与直线l垂直的直线为x轴建立直角坐标系(图2-30)设定点f(p,0),动点m的坐标为(x,y),过m作mdy轴于d,抛物线的集合为:p=m|mf|=|md|化简后得:y2=2px-p2(p0)方案2:(由第二组同学完成,请一优等生演板)以定点f为原点,平行l的直线为y轴建立直角坐标系(图2-31)设动点m的坐标为(x,y),且设直线l的方程为x=-p,定点f(0,0),过m作mdl于d,抛物线的集合为:p=m|mf|=|md|化简得:y2=2px+p2(p0)方案3:(由第三、四组同学完成,请一优等生演板)取过焦点f且垂直于准线l的直线为x轴,x轴

36、与l交于k,以线段kf的垂直平分线为y轴,建立直角坐标系(图2-32) 抛物线上的点m(x,y)到l的距离为d,抛物线是集合p=m|mf|=d化简后得:y2=2px(p0)(3) 例题讲解与引申教材中选取了2个例题,例1是让学生会应用公式求抛物线的焦点坐标和准线方程。例2是应用方面的问题,关键是由题意设出抛物线的方程即可。1 2。 3 2 抛物线的几何性质(1) 抛物线的几何性质下面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p0)出发来研究它的几何性质(二)几何性质怎样由抛物线的标准方程确定它的几何性质?以y2=2px(p0)为例,用小黑板给出下表,请学生对比、研究和填写

37、(2) 例题的讲解与引申 例3有2种解法;解法一运用了抛物线的重要性质:抛物线上任一点到焦点的距离(即此点的焦半径)等于此点到准线的距离可得焦半径公式设p(x0,这个性质在解决许多有关焦点的弦的问题中经常用到,因此必须熟练掌握(2)由焦半径不难得出焦点弦长公式:设ab是过抛物线焦点的一条弦(焦点弦),若a(x1,y1)、b(x2,y2)则有|ab|=x1+x2+p特别地:当abx轴,抛物线的通径|ab|=2p例4涉及直线与圆锥曲线相交时,常把直线与圆锥曲线方程联立,消去一个变量,得到关于另一变量的一元二次方程,然后用韦达定理求解,这是解决这类问题的一种常用方法附 教学教案2.4.1抛物线及标准

38、方程 (3) 新课讲授过程(i)由上面的探究过程得出抛物线的定义板书平面内与一定点f和一条定直线l的距离相等的点的轨迹叫做抛物线(定点f不在定直线l上)定点f叫做抛物线的焦点,定直线l叫做抛物线的准线.(ii) 抛物线标准方程的推导过程引导学生分析出:方案3中得出的方程作为抛物线的标准方程这是因为这个方程不仅具有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的2倍由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形(列表如下):将上表画在小黑板上,讲解时出示小黑板,并讲清为什么会出现四种不同的情形,四种情形中p0;并指出图形的位置特征和方程的形式应结合起来

39、记忆即:当对称轴为x轴时,方程等号右端为±2px,相应地左端为y2;当对称轴为y轴时,方程等号的右端为±2py,相应地左端为x2同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号(iii)例题讲解与引申例1 已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程已知抛物线的焦点是f(0,-2),求它的标准方程解 因为p=3,所以抛物线的焦点坐标是(3/2,0)准线方程是x=-3/2 因为抛物线的焦点在轴的负半轴上,且p/2=2,p=4,所以抛物线的标准方程是x2=-8y例2一种卫星接收天线的轴截面如图所示。卫星拨束近似平行状态社如轴截面为抛物线的接受天线,

40、经反射聚焦到焦点处。已知接收天线的口径为4.8m深度为0.5m,求抛物线的标准方程和焦点坐标。解;设抛物线的标准方程是y2=2px (p>0)。有已知条件可得,点a的坐标是(0.5,2.4)代入方程,得2.4=2p*0.5即=5.76所以,抛物线的标准方程是y2=11.52x,焦点坐标是(2.88,0)练习:第72页1、2、3、作业:第78页1、2、3、4、2.4.2 抛物线的几何性质复习与引入过程1抛物线的定义是什么?请一同学回答应为:“平面内与一个定点f和一条定直线l的距离相等的点的轨迹叫做抛物线”2抛物线的标准方程是什么?再请一同学回答应为:抛物线的标准方程是y2=2px(p0),

41、y2=-2px(p0),x2=2py(p0)和x2=-2py(p0)下面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p0)出发来研究它的几何性质板书抛物线的几何性质(2)新课讲授过程(i)抛物线的几何性质通过和椭圆、双曲线的几何性质相比,抛物线的几何性质有什么特点?学生和教师共同小结:(1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但是没有渐近线(2)抛物线只有一条对称轴,这条对称轴垂直于抛物线的准线或与顶点和焦点的连线重合,抛物线没有中心(3)抛物线只有一个顶点,它是焦点和焦点在准线上射影的中点(4)抛物线的离心率要联系椭圆、双曲线的第二定义,并和抛物线的定义作比

42、较其结果是应规定抛物线的离心率为1注意:这样不仅引入了抛物线离心率的概念,而且把圆锥曲线作为点的轨迹统一起来了(ii)例题讲解与引申例题3 已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点m(-3,m)到焦点的距离等于5,求抛物线的方程和m的值解法一:由焦半径关系,设抛物线方程为y2=-2px(p0),则准线方因为抛物线上的点m(-3,m)到焦点的距离|mf|与到准线的距离得p=4因此,所求抛物线方程为y2=-8x又点m(-3,m)在此抛物线上,故m2=-8(-3)解法二:由题设列两个方程,可求得p和m由学生演板由题意在抛物线上且|mf|=5,故例4 过抛物线y2=2px(p0)的焦点f的一

43、条直线与这抛物线相交于a、b两点,且a(x1,y1)、b(x2,y2)(图2-34)证明:(1)当ab与x轴不垂直时,设ab方程为:此方程的两根y1、y2分别是a、b两点的纵坐标,则有y1y2=-p2或y1=-p,y2=p,故y1y2=-p2综合上述有y1y2=-p2又a(x1,y1)、b(x2,y2)是抛物线上的两点,第三章 空间向量与立体几何3.1空间向量及其运算(一)向量的加法:向量的减法:实数与向量的积:实数与向量a的积是一个向量,记作a,其长度和方向规定如下:(1)|a|a|(2)当0时,a与a同向; 当0时,a与a反向; 当0时,a0.师关于向量的以上几种运算,请同学们回忆一下,有

44、哪些运算律呢?生向量加法和数乘向量满足以下运算律加法交换律:abba加法结合律:(ab)ca(bc)数乘分配律:(ab)ab师今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用请同学们阅读课本p26p27.新课讲授师如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量例如空间的一个平移就是一个向量那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?生与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量师由以上知识可知,向量在空间中是可

45、以平移的空间任意两个向量都可以用同一平面内的两条有向线段表示因此我们说空间任意两个向量是共面的师空间向量的加法、减法、数乘向量各是怎样定义的呢?生空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:=a+b,(指向被减向量),a 师空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律生空间向量加法与数乘向量有如下运算律:加法交换律:a + b = b + a;加法结合律:(a + b) + c =a + (b + c);(课件验证)数乘分配律:(a + b) =a +b师空间向量加法的运算律要注意以下几点:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量即:因

46、此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量即:两个向量相加的平行四边形法则在空间仍然成立因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则例已知平行六面体(如图),化简下列向量表达式,并标出化简结果的向量:说明:平行四边形abcd平移向量 a 到abcd的轨迹所形成的几何体,叫做平行六面体记作abcdabcd平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱解:(见课本p27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所

47、表示的向量,这是平面向量加法的平行四边形法则向空间的推广.巩固练习空间向量及其运算(2)1共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。读作:平行于,记作:2共线向量定理:对空间任意两个向量的充要条件是存在实数,使(唯一)推论:如果为经过已知点,且平行于已知向量的直线,那么对任一点,点在直线上的充要条件是存在实数,满足等式,其中向量叫做直线的方向向量。在上取,则式可化为或当时,点是线段的中点,此时和都叫空间直线的向量参数方程,是线段的中点公式3向量与平面平行:已知平面和向量,作,如果直线平行于或在内,那么我们说向量平行于平面,记作:通常

48、我们把平行于同一平面的向量,叫做共面向量说明:空间任意的两向量都是共面的4共面向量定理:如果两个向量不共线,与向量共面的充要条件是存在实数使推论:空间一点位于平面内的充分必要条件是存在有序实数对,使或对空间任一点,有上面式叫做平面的向量表达式(三)例题分析:例1已知三点不共线,对平面外任一点,满足条件,试判断:点与是否一定共面?解:由题意:,即,所以,点与共面说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算【练习】:对空间任一点和不共线的三点,问满足向量式 (其中)的四点是否共面?解:,点与点共面例2已知,从平面外

49、一点引向量,(1)求证:四点共面;(2)平面平面解:(1)四边形是平行四边形,共面;(2),又,所以,平面平面五、课堂练习:课本第96页练习第1、2、3题六、课堂小结:1共线向量定理和共面向量定理及其推论;2空间直线、平面的向量参数方程和线段中点向量公式七、作业:1已知两个非零向量不共线,如果,求证:共面2已知,若,求实数的值。3如图,分别为正方体的棱的中点,求证:(1)四点共面;(2)平面平面4已知分别是空间四边形边的中点,(1)用向量法证明:四点共面;(2)用向量法证明:平面3.1.3空间向量的数量积(1)(二)新课讲解:1空间向量的夹角及其表示:已知两非零向量,在空间任取一点,作,则叫做

50、向量与的夹角,记作;且规定,显然有;若,则称与互相垂直,记作:;2向量的模:设,则有向线段的长度叫做向量的长度或模,记作:;3向量的数量积:已知向量,则叫做的数量积,记作,即已知向量和轴,是上与同方向的单位向量,作点在上的射影,作点在上的射影,则叫做向量在轴上或在上的正射影;可以证明的长度4空间向量数量积的性质: (1)(2)(3)5空间向量数量积运算律:(1)(2)(交换律)(3)(分配律)(三)例题分析:例1用向量方法证明:直线和平面垂直的判定定理。已知:是平面内的两条相交直线,直线与平面的交点为,且求证:证明:在内作不与重合的任一直线,在上取非零向量,相交,向量不平行,由共面定理可知,存

51、在唯一有序实数对,使,又,所以,直线垂直于平面内的任意一条直线,即得例2已知空间四边形中,求证:证明:(法一) (法二)选取一组基底,设,即,同理:,即说明:用向量解几何题的一般方法:把线段或角度转化为向量表示,并用已知向量表示未知向量,然后通过向量运算取计算或证明。例3如图,在空间四边形中,求与的夹角的余弦值。解:, ,所以,与的夹角的余弦值为说明:由图形知向量的夹角时易出错,如易错写成,切记!四、教学过程:考点一:向量的数量积运算(一)、知识要点:1)定义: 设<>=,则 (的范围为 )设,则 。注:不能写成,或 的结果为一个数值。2)投影:在方向上的投影为 。3)向量数量积运算律: 注:没有结合律一)、知识要点: (用于判定垂直问题)(用于求模运算问题)(用于求角运算问题).1.5空间向量运算的坐标表示一、向量在轴上的投影1几个概念(1) 轴上有向线段的值:设有一轴,是轴上的有向线段,如果数满足,且当与轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论