




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 电子科技大学成都学院 基于锁相环的本振源学院(系)微电子技术系年级专业 14级电科(1)班 学生姓名 :刘俊杰 王钰均 张建兵指导教师 李伟摘 要文章研究一种利用锁相环频率合成技术和数字波形合成技术组成的程控低频正弦波信号发生器,频率分辨率0.1HZ输出正弦波频率和幅值的精度高,稳定性好,且失真度很低,电路简单,可靠,便于程控,可作为标准正弦信号源应用于高准确度仪表中本文首先介绍了研究课题的背景,既频率合成技术的发展,应用,现状。然后介绍了信号发生器(本振源)的相关知识,锁相环技术和直接频率合成计数的功能和应用。本文所采用的PLL+DSS频率合成方法可以将DDS的超高频率分辨率、高频率精确度
2、、容易实现程控等优点与锁相环良好的窄带跟踪滤波特性相结合,从而实现系统所要求的宽带扫频功能及相应的技术指标。关键词锁相环 DDS 频率合成 标准正弦波AbstractThis paper studies a program-controlled low-frequency sinusoidal generator by means of phase-locked loop frequency synthesizer and digital wave synthesizer technology. Its frequency distinguish ratio is 0.1 Hz Output-
3、sinewave frequency and range is high precision,well stabilty and at much low distortion.The circuit is simple,reliable and programmable controlled It can be used in high accuracy device as standard sine wave signal generator.This article first introduced the research subject background, also frequen
4、cy synthesis technology development, application, present situation. Then introduced the signal generating device related knowledge, the phase-locked loop technology and the direct frequency synthesis counting function and the application The basic theories of the frequency synthesis, PLL,DDS,DDS+PL
5、L a re introduced at the second chapter in this paper. Subsequently, some questions about the design of the system on frequency synthesis are discussed. At last, the scheme of subject, the functional realization of each module, some questions which must be pay much attention in the system design,The
6、 hybrid frequency synthesis technology一DDS+PLL used in the subject have many advantages.Using this method,the merits of DDS such as super fine frequency resolution, high frequency accuracy, easy programmed can be in combination with the excellent character of narrow-band tracing filter merits of PLL
7、. Thereby, the wideband sweep function and specification of the system can be realizedKeywords PLL,DDS,Frequency synthesis,Standard sine wave目 录摘 要IAbstractII第1章 绪论11.1 课题背景11.2 信号发生器简介21.3锁相环(PPL)及直接数字频率合成(DDS)技术简介41.3.1锁相环技术41.3.2直接数字频率合成技术81.4本章小结8第2章 电路的主要部件及原理92.1锁相环的结构及基本原理92.2锁相环路的各部件及其数学模型11
8、2.2.1鉴相器122.2.2 环路滤波器122.2.3 压控振荡器132.2.4 锁相环的数学模型142.3 DDS的基本原理172.4 本章小结18第3章 电路设计193.1频率合成部分193.2波形生成部分283.3本章小结33结论34参考文献35致谢36附录1I附录2IV附录3VIII附录4XIX.01 引言随着通信技术、数字电视、航空航天和遥控技术的不断发展,对频率源的频率稳定度、频谱纯度、频率范围和输出频率数量的要求也越来越高。为了提高频率的稳定度,经常采用晶体振荡器等方法来解决,但它很难产生多个频率信号。而频率合成技术,可以通过对频率进行加、减、乘、除运算,从一个高稳定度和高准确
9、度的标准信号源,产生大量具有同样高稳定度和高准确度的不同频率。频率合成器是从一个参考频率中产生多种频率的器件。基于频率合成器的这以一特点,利用锁相式频率合成技术,可以制作高稳定度、宽频带的正弦波信号发生器。2 设计要求利用锁相环技术产生一个失真度小、频率从100MHz到150MHz的可调的正弦波信号。根据频率的不同选择不同步进的标准频率。当信号处于较低频率时,选择步进为100KHz的标准频率,此时它的最小误差不大于0.8%。3方案论证与比较3.1 压控振荡器方案论证与选择 方案1:采用分立元件构成。利用低噪声场效应管,用单个变容二极管直接接入振荡回路作为压控器件。图3-1 压控振荡电路电路是电
10、容三点式振荡器,如图3-1所示。该方法实现简单,但是调试困难,而且输出频率不易灵活控制1。方案2:采用压控振荡器和变容二极管,及一个LC谐振回路构成变容二极管压控振荡器。只需要调节变容二极管两端的电压,便可改变压控振荡的输出频率。由于采用了集成芯片,电路设计简单,系统可靠性高,并且利用锁相环频率合成技术可以使输出频率稳定度进一步提高。综上所述,方案2具有更优良的物性和更简单的电路构成,所以使用方案2作为本次设计的方案。3.2 频率合成器的设计方案论证与选择 方案1:采用直接式频率合成器技术,将一个或几个晶体振荡器产生的标准频率通过谐波发生器产生一系列频率,然后再对这些频率进行倍频、分频或混频,
11、获得大量的离散频率。其组成框图如3-2所示。直接式频率合成器频率稳定度高,频率转换时间短,频率间隔小。但系统中需要用大量的混频器、滤波器等,体积大,易产生过多杂散分量,而且成本高、安装调试都比较困难。晶振谐波发生器分频器倍频器混频器fOut2fOut3fOut1图3-2 直接式频率合成方案2:采用模拟锁相式频率合成器技术,通过环路分频器降频,将VCO的频率降低,与参考频率进行鉴相。优点:可以得到任意小的频率间隔;鉴相器的工作频率不高,频率变化范围不大,较容易实现,带内带外噪声和锁定时间易于处理,频率稳定度与参考晶振的频率稳定度相同。缺点是分频率的提高要通过增加循环次数来实现,电路超小型化和集成
12、化比较复杂2。方案3:采用数字锁相环式频率合成技术,由晶振、鉴频/鉴相(FD/PD)、环路滤波器(LPF)、可变分频器(÷N)和压控振荡器(VCO)组成。组成框图如图5-1所示。利用锁相环,将VCO的输出频率锁定在所需频率上。此电路可以很好地选择所需频率信号,抑制杂散分量,并且避免了大量的滤波器,采用大规模的集成芯片,与前两种方案相比可以简化频率合成部分的设计,有利于集成化和小型化。频率合成采用大规模集成PLL芯片MC145152,VCO(压控振荡器)选用MC1648; 综上所述,选择方案3即采用大规模PLL芯片MC145152和其他芯片构成数字锁相环式频率合成器。4 系统组成根据要
13、求设计信号发生器,输出信号为正弦波。设计中采用锁相环式的频率合成技术,利用锁相环,使输出的正弦波频率与晶体振荡器的稳定度一样。控制部分采用单片机来完成,利用数码管对频率进行显示并对频率值进行存储。系统框图如图4-1所示数码显示频率AT89C51频率合成器MC145152低通滤波器压控振荡器键盘控制频率测量电路输出存储电路图4-1系统框图5 锁相环介绍5.1 锁相环的概念锁相环是指使高频振荡器的频率与基准频率的整数倍频率一致时所使用的电路。通常基准振荡器都使用晶体振荡器,所以高频振荡的频率稳定度与晶体振荡器相同。5.2 锁相环基本框图图5-1是锁相环的基本结构图,由VCO、相位比较器、基准频率振
14、荡器、环路滤波器所组成的。在这里用表示基准频率振荡器频率,则表示VCO的频率。当压控振荡器的频率由于某种原因而发生变化时,必然相应地产生相位的变化。相位利用低通滤波器把误差信号变成直流电压比较与从而产生误差信号PD鉴相器(PD)VCO(电压控制振荡器)环路滤波器基准振荡频率振荡频率随VR而变化Ud(t)C(t)UR(t)0 图5-1 PLL的基本结构图的变化在鉴相器中与参考晶体振荡器的稳定相位相比较,使鉴相器输出一个与相位误差成比例的误差电压分量C(t)。C(t)用来控制压控振荡器中的压控元件参数,一般指的是变容二极管,而这压控元件又是VCO振荡回路的组成部分,结果压控元件电容量的变化将VCO
15、的输出频率又拉回稳定值来。这样,VCO的输出频率稳定度即由参考晶体振荡器所决定。由频率与相位的关系可知,瞬时频率与瞬时相位的关系是:(t)= (5.1)= + (5.2)式中的为初始相位,为瞬时频率。由上面讨论可知加到鉴相器的两个振荡信号的频率差为: (5.3)为参考晶体振荡器的频率, 压控荡频率。此时的瞬时相位差为=+ (5.4)当两个振荡器的频率相等时它们的瞬时相位差是一个常数,即:= (5.5)(t)= =0 (5.6)亦即当两个振荡频率相等时,有相位差,无频率差3。5.3 鉴相器的时序图当与 的关系为>。也就是VCO振荡频率低于时的状态。此时相位比较器的输出PD,如图5-2所示,
16、产生正脉冲信号,使VCO的振荡频率提高的信号。反之,当<是产生负脉冲。这一PD脉波信号经过回路滤波器的积分,便可图5-2相位/频率比较器的动作以得到直流电压VR,可以控制VCO电路。由于控制电压VR的变化,VCO振荡频率会提高。结果使得=在与的相位成为一致时,PD端子会成为高阻抗状态,使PLL被锁定(Lock)。5.4 捕捉带与通频带压控振荡器本来处于失锁状态时,由于环路的作用,使压控振荡频率逐渐向标准参考频率靠近,靠近到一定程度后,环路即能进入锁定。这一过程叫做捕捉过程。系统能捕捉最大的频率失谐范围称为捕捉带或捕捉范围。当环路已锁定后,如果由于某种原因引起频率变化,这种频率变化反映为相
17、位变化,则通过环路的作用,可使VCO的频率和相位不断跟踪变化。这时环路即处于跟踪状态。环路所能保持跟踪的最大失谐频带称为同步带,又称为同步范围或锁定范围。6 单元电路的设计6.1 压控振荡器压控振荡就是在振荡电路中采用压控元件作为频率控制器件。压控器件一般是用变容二级管,它的电容量受到输入电压的控制,当输入电压变化,就引起了起振荡频率的变化。因此,压控振荡器事实是一种电压频率变换器。它的特性可用瞬时振荡频率与控制电压C之间的关系曲线来表示,如图6-1所示。图上的中心频率是在没有外加控制电压时的固有频率。在一定范围内,与C之间是线性关系。在线性范围内,这一线性可用下列方程来表示。(t)=+KrC
18、(t) (6.1) Kr是特性曲线的斜率,称为VCO的增益或灵敏度,量纲为rad/s.V,它表示单位电压所引起的振荡角频率变化的大小。0OC 图6-1 压控振荡器的特性曲线6.1.1 压控振荡器MC1648MC1648是一个8引线双列直插的器件,内部电路图如图6-2所示。压控振荡电路由芯片内部Q8、Q5、Q4、Q1、Q7和Q6,10脚和12脚外接LC谐振回路组成正反馈的正弦振荡电路4,其振荡频率: (6.2)(6.3) 、分别为电感、电容大小,为变容二极管的电容量。图6-2 MC1648内部原理图6.1.2 压控振荡电路设计图6-3为压控振荡电路图。压控振荡器主要由压控振荡芯片MC1648和变
19、容二图6-3 压控振荡电路极管MV209以及谐振回路构成。MC1648需要外接一个由电感和电容组成的并联谐振回路5。为达到最佳工作性能,在工作频率要求并联谐振回路的QL100。电源采用5V 的电压,振荡器的输出频率随加在变容二极管上的电压大小变化而变化。通过切换电源来切换电感量,从而改变振荡频率。 6.1.3 变容二级管与开关二级管切换电路 变容二极管变容二级管是一种特制的二级管,它的PN结电容变化范围比较大,正常工作时,变容二级管加反相电压,在其PN结上产生电荷存储,于是相当于一个电容,当反向电压改变时,变容二级管的结电容也发生相应的变化 6。变容二级管的结电容CVD和外加反向偏压UR的关系
20、可用下式表示。(6.4) UR 是加在变容二极管的反向电压,CVD0为UR=0时 的结电容U0 是接触电位差;n是电容变化系数。 电感切换电路为了扩大频率的带宽,通过切换电源来切换电感。图6-4是开关二级管切换频段电路图。当开S连接+5V时,开关二级管VD2截止,电感L1和L2相加,电感量较大,对应于低频段VL;当S接向地时,VD2导通,L2被大电容2000pF短接,电感只剩下L1,电感量较小,对应于高频段 7。图6-4 电感切换电路6.2 锁相环式频率合成器的设计6.2.1的管脚图与内部组成MC145152为28管脚芯片,其管脚图如图6-5所示。管脚OSCin与OSCout为外接晶振管脚,一
21、般接12MHz晶体,主要产生标准频率和时钟信号。图6-5 MC145152管脚图6.2.2 输入、输出数据形式MC145152的串行数据输入靠锁存器的CE、CLK和DA三个端子完成。时钟信号、数据信号和使能信号逻辑关系如图6-6所示。其中T1应大于15s, T2大于2s,时钟宽度应大于1s。数据和状态字共32位,从低位到高位依次排列为:D0、D1D 15 、图6-6 CLK、DATA、CE的逻辑关系P0、P1、P2 、*、*、*、*、CT、R0、R1、R 2、S、PS、*、GT、TS。其中D0到D 15、表示可变分频比的16位二进制数;*表示与控制不相关的位,可为1 或0;参考分频器产生的标准
22、频率由R0、R1、R2三位数据控制,控制关系如表6-1所示。表6-1 R0、R1、R2与标准频率的关系 R0 R1 R2 标准频率 000 25KHz 0 11 3.25 KHz 1 0 0 6.25 KHz 1 1 0 1 KHz 111*PLL关闭P0、P1、P2为输出口控制数据,可使输出通道打开或关闭。置0时为通道打开。S和PS可用于收音机中FM和AM的选择。数据输出由CD端输出,此时CLK、CD与CE的逻辑关系与数据输入类似,只不过CE要求为低电平。CT、GT等用于频率测量与计数的控制。 6.2.3 MC145152的外围电路工作原理图6-7 锁相环控制电路图MC145152的外围电路
23、如图6-7所示。5脚接收单片机的串行数据,该数据为12脚反馈频MC12022提供分频系数N,内部标准频率由串行数据位中的R0、R1、R2的取直确定。该设计选择R0、R1、R2 为000或110。当频率在25MHz到54MHz之间选择标准频率为1KHz,也就是R0、R1、R2为110;所选择的标准频率与/N比较,在PD输出相位比较信号,根据PD输出端的状态,从低通滤波器得到相应的直流电压,该电压直接控制压控振荡的变容二极管,从压控振荡输出的频率通过电容耦合反馈到BU2614中使环路锁定。6.3 低通滤波器图6-8 滤波电路图低通滤波器由三极管和RC电路组成,其电路图如图6-8所示。低通滤波器用于
24、滤除鉴相器输出的误差电压中高频分量和瞬变杂散干扰信号,以获得更纯的控制电压,提高环路稳定性和改善环路跟踪性能和噪声性能。锁相稳频系统是一个相位反馈系统,其反馈目的是使VCO的振荡频率由自有偏差的状态逐步过渡到准确的标准值。而VCO如做调频源用,其瞬时频率总是偏离标准值的。振荡器中心频率不稳主要由温度、湿度、直流电源等外界因素引起,其变化是缓慢的,锁相环路只对VCO平均中心频率不稳定所引起的分量(处于低通滤波器通带之内)起作用,使其中心频率锁定在设定的频率上。因此,输出的调频波的中心频率稳定度很高8。6.4 电源切换电路设计 电源切换电路如图6-9所示。此控制电路是用三级管和光偶来控制输出的高低
25、电平,使开关二级管截止或导通(见图6-4),从而来切换电感量。当P3.0输出高电平时,三极管导通,导致光偶导通,使输出为低电平;当P3.0为低电平时,三极管截止,导致光偶截止,使输出为高电平9。图6-9 电源切换电路6.5 电源电路设计电源电路如图6-10所示,由于低通需要12V的工作电压、MC1648、单片机、BU2614 图6-10 电源电路等工作电压需要5V,所以变压器的输出只需要接地和15V,考虑到高频信号产生电路和单片机共用一个电源会互相干扰,所以采取对单片机单独供电。由变压器出来的交流信号分别经过两个L7812CV,一路直接接到低通和L7805CV;另一路L7812CV的输出直接接
26、到L7805CV,它的输出单独供给给单片机。在三端稳压管的输入输出端与地之间连接大容量的滤波电容,使滤掉纹波的效果更好,输出的直流电压更稳定。接小容量高频电容以抑制芯片自激,输出引脚端连接高频电容以减小高频噪声10。6.6电子控制单元电路(ECU)ECU是控制系统的核心,其作用是对输入的信号进行检测、运算处理和逻辑判断,根据预先存储的控制程序和试验数据,向各执行器发出控制指令,控制各执行器的工作。89C51是控制系统内部的主要部分,它是整个控制系统的处理单元,AT89C51是一种带4K字节可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失
27、存储器制造技术制造,与工业标准的MCS-51 指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案13。6.7.1 89C51单片机的管脚说明 VCC:供电电压(5V) GND:接地P0口:P0口为一个8位漏级开路双向I/O口。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。 图6-12 MCS-51的引脚P1
28、口:P1口是一个内部提供上拉电阻的8位双向I/O口。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为低八位地址接收。 P2口:P2口为一个内部上拉电阻的8位准双向I/O口。当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。 P3口:P3口管脚是8个带内部上拉电阻的
29、准双向I/O口。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流这是由于上拉的缘故。P3口也可作为AT89C51的一些特殊功能口,如下所示:P3口管脚备选功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)RST:复位输入。要保持RST脚两个机器周期的高电平时间。当8051通电,时钟电路开始工作,系统即初始复位。
30、常见复位电路如图6-13所示。图6-13 复位电路ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的低位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此
31、引脚也用于施加5V编程电源(VPP)。 XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。 振荡器特性:XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无图任何要求,但必须保证脉冲的高低电平要求的宽度。 MCS-51单片机的内部结构如图6-14所示。89C51单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元
32、及数据总线、地址总线和控制总线等三大总线14。 中央处理器中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成 6-14 MCS-51内部结构运算和控制输入输出功能等操作。 数据存储器(RAM)89C51内部有128个8位用户数据存储单元和128个专用寄存器单元,它们是统一编址的,专用寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据,所以,用户能使用的的RAM只有128个,可存放读写的数据,运算的中间结果或用户定义的字型表。 程序存储器89C51共有4096个E2PROM,用于
33、存放用户程序,原始数据或表格。 定时/计数器 89C51有两个16位的可编程,以实现定时或计数产生中断用于控制程序转向。 并行输入输出口 89C51共有4组8位I/O口(P0、 P1、P2或P3),用于对外部数据的传输。 全双工串行口89C51内置一个全双工串行通信口,用于与其它设备间的串行数据传送,该串行口既可以用作异步通信收发器,也可以当同步移位器使用。 中断系统89C51具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串行中断,可满足不同的控制要求,并具有2级的优先级别选择。 时钟电路 89C51内置最高频率达12MHz
34、的时钟电路,用于产生整个单片机运行的脉冲时序,但89C51单片机需外置振荡电容。单片机的结构有两种类型,一种是程序存储器和数据存储器分开的形式,即哈佛(Harvard)结构,另一种是采用通用计算机广泛使用的程序存储器与数据存储器合二为一的结构,即普林斯顿(Princeton)结构。INTEL的MCS-51系列单片机采用的是哈佛结构的形式 。6.8 频率测量显示电路显示电路如图6-15所示15。由于锁相环产生正弦波的频率较高,无法用单片机直接来测量它的频率,必须先用高速分频器来对它进行分频,使它降低到单片机的测量范围之内。但又考虑到性价比的问题,可直接用频率合成器MC145152的控制字和分频比
35、来送给单片机显示。当控制字是8600H时,也就是R0、R1、R2为000时,选择步进为1K的标准频率,频率范围从25MHz到54MHz,根据 (6.5)N是分频比,为输入MC145152的频率, 为标准信号源频率可计算出分频比的范围: (6.6) (6.7)转化成十六进制的变化范围是从61A8H到D2F0H。当控制字是8000H时,R0、R1、R2为110时,步进为25KHz标准频率,频率从54 MHz 到110MHz,根据上面的公式可得分频数从0870H到1130H。送显示的时候可把它的分频数乘于所选择的标准频率,然后进行BCD码转换,再送给单片机处理。分频比可通过按键来调整。设置四个按键,
36、分别是加一、加十、减一、减十。当需要选择较大调整时,可选择加十或减十;当需要较小范围调整时,可选择加一或减一。图6-15 显示电路7 软件设计7.1软件分析图7-2 按键流程图8 测试结果 统调以后,用示波器可测量出各个频率值与相对应的电压值,由于考虑到正弦波的频带宽不能一一列出,这里测出以10MHz为步长,从25MHz到105MHz的9个测试频率点。从表8-1测试结果可以得出,在65MHz的时候电压值最大,也就是在这个频率点的时候Q值最大。表8-1频率与电压的对应关系(频率单位MHz)理想频率2535455565758595105测得频率24.634.745.255.365.375.485.595.4105.5电压(V)1.291.421.521.682.001.500.950.650.45 9 结论由于晶体振荡器单频点的局限性,难于满足多频点的要求。本设计为了修正石英晶体振荡器的不足,运用锁相环来产生一个高稳定度、高精确度、多频点的正弦波信号。产生的正弦波信号可应用于调频、解调、通信、电视等领域。 本设计的优点是,通过切换电感可扩大锁相环的带宽,实现100MHz到150MH
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赊销额度协议书
- 楼栋长志愿服务协议书
- 背书转让协议书
- 变更孩子抚养权协议书
- 综合还款协议书
- 考研录取协议书
- 房屋代买卖合同协议书
- 酒场休战协议书
- 道路绿化协议书
- 米油回收协议书
- 煤矿矿安全风险评估报告
- 《公路路基路面现场测试规程》(3450-2019)
- 诊所收费标准价目表
- 高血压病人自我-管理行为测评量表
- 起重作业培训-指挥手势-旗语
- 碳钢管道焊接工艺规程完整
- 《送元二使安西》完整课件
- 防骗反诈类知识考试题库100题(含答案)
- 北师大版小学数学二年级下册第7单元《奥运开幕》练习试题
- 山西河曲晋神磁窑沟煤业有限公司煤炭资源开发利用、地质环境保护与土地复垦方案
- 高考英语分层词汇1800(适合艺考生使用)
评论
0/150
提交评论