




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 第一章 实数 第一节平方根 第1课时 总第1课时教学目标1、了解平方根的概念,会用根号表示平方根。2、了解开方与乘方互逆运算,会求某些非负数的平方根。3、发展学生的符号语言。教学重点能熟练地用平方根求某些非负数的平方根教学难点了解开方与乘方互为逆运算教学方法观察、比较、合作、交流、探索.设计思路学生通过问题情景在计算、探索、交流的过程中能感悟到平方根的意义,并且能够知道正、0、负数的平方根规律。教学过程(一)创设情景,感悟新知情景一:在等式中 ,(1) 已知,你能求吗?(2) 已知,你能求吗?(二)探索规律,揭示新知问题一:认真观察下面的式子,积极思考,互相讨论:请你举例与上面的式子类同的式
2、子;你得到什么结论?(分小组讨论,老师适当参与给予帮助。)如果一个数的平方等于,那么这个数叫做的平方根,也称为二次方根。如果,那么就叫做的平方根。【设计说明:所选的题目都具有代表性,学生通过做题后思考讨论交流,能够较好接受平方根的概念】问题二:在下列各括号中能填写适当的数使等式成立吗?如果能够,请填写;如果不能,请说明理由,并与同学交流。一个正数的平方根有2个,它们互为相反数。一个正数的正的平方根,记作“”,正数的负的平方根记作“”。这两个平方根合起来记作“”,读作“正,负根号”.【设计说明:通过对具体的数的平方根的讨论交流,使学生自己总结出正数、0、负数的平方根的情况,让学生经历探索规律的过
3、程,加深对规律的理解】问题三:从问题二中,你得到了什么结论?一个正数的平方根有2个,它们互为相反数;0只有1个平方根,它是0本身;负数没有平方根。【设计说明:在讨论的过程中,不同层次的学生可能会遇到不同的困难,我们教师要给与适当的帮助,要给与鼓励】(三)尝试反馈,领悟新知例1 求下列各数的平方根:25;(2)(3)15;(4)。分析:1、判断这些数是否都有平方根;2、根据规律各个数的平方根有几个?【设计说明:在处理例题时要让学生充分参与分析,在运算时特别要注意一个正数的平方根有两个,对解题方式有提醒按要求】练习题一:完成书本4页练习。练习题二:1、平方得81的数是 ,因此81的平方根是 。 2
4、、平方根是它本身的数是 。 3、如果是的平方根,那么 a、; b、 ; c、; d、。【设计说明:在练习的过程中,无论哪个层次的学生其回答只得法,我们教师要给与鼓励和肯定】(四)布置作业,巩固新知 p7 1、2 可选用:下列各数有平方根吗?如果有,写出它的平方根;如果没有,请说明理由。(1);(2);(3);(4)。 第一章 实数 第一节 平方根 第1课时 总第2课时教学目标1、了解算术平方根的概念,会用根号表示数的算术平方根。2、了解开方与乘方互为逆运算,会用平方根运算求某些非负数的算术平方根。3、能运用算术平方根解决一些简单的实际问题。4、每个学生都参与到活动中去感受学习的乐趣,提高学习数
5、学的兴趣。教学重点理解平方根、算术平方根的意义教学难点能运用算术平方根解决一些简单的实际问题教学方法观察、比较、合作、交流、探索.设计思路学生通过问题情景,在计算、探索、交流的过程中能感悟到算术平方根的意义,并且能运用算术平方根解决一些简单的实际问题。教学过程(一)创设情景,感悟新知情景一:小明家装修新居,计划用100块地板砖来铺设面积为25平方米的客厅地面,请帮他计算:每块正方形地板砖的边长为多少时,才正好合适(不浪费)?情景二:求4个直角边长为10厘米的等腰直角三角形纸片拼合成的正方形的边长?【设计说明:将生活实际与数学联系起来,更能激发学生的兴趣,便于学生主动发现一个数的算术平方根正的平
6、方根,为解决问题提供方便】教师讲解:正数有个平方根,其中正数的正的平方根,叫的算术平方根.例如,4的平方根是,记作;2叫做4的算术平方根,记作; 2的平方根是叫做2的算术平方根。(二)探索规律,揭示新知例题讲解: 例2求下列各数的算术平方根:(1)625;(2)0.0081;(3)6;(4)0。【设计说明:在书写时仍采用结合文字语言叙述是写法,以利于学生加深对开平方与平方互为逆运算关系的理解。此题虽然比较简单但也考查了学生对算术平方根的理解情况,我们从学生的角度尤其学习有困难的学生来思考的话也许讲解起来学生更容易理解了】(三)尝试反馈,领悟新知完成下列习题,做题后思考讨论交流。(1) (2)
7、(3) (4) (5) (6) 从这些题目中要引导学生探索发现一般形式: . 【设计说明:在讨论中我们要相信学生只要他们能发现一点规律或自己的看法,都应给予鼓励和肯定,同时对于学习有困难的学生要提供一定的帮助。】(四)归纳小结,巩固提高你能说出一些数的平方根与算术平方根吗?算术平方根与平方根有什么区别与联系?【设计说明:在教学中要学生在解决问题中表现出的不同水平,让学生交流各自解决问题的策略,不断获得解决问题的经验,提高思维水平。不要把归纳概括出一般形式作为本节课思维拓展的主要目标。】(五)布置作业,巩固新知 完成课本p8习题3、4补充思考题:1、已知的平方根是±3,的平方根是
8、77;4,求和的值2、若,求、的值 第一章 实数 第二节 立方根 第1课时 总第3课时教学目标:1. 学生在一定的情境中,理解立方根的概念,不断获得解决问题的经验,提高思维水平,学习中要注意感悟“类比”在知识产生和发展过程中的作用。2. 了解立方根的概念,会用根号表示一个数的立方根,了解开立方与立方互为逆运算,能用立方运算求一些数的立方根3. 能用立方根解决一些简单的实际问题。教学重点:正确地理解立方根的概念及符号表示教学难点:能熟练应用立方根知识教学方法:观察、比较、合作、交流、探索.创设情境,感悟新知情境一体积为1的正方体,棱长为多少?体积增加1,棱长为多少?情境二做一个正方体纸盒,使它的
9、容积为64cm,正方体纸盒的棱长是多少?如果要使正方体纸盒容积为25cm,它的棱长是多少?引入课题 1、2立方根从实际问题的计算,感受学习立方根的必要性,教学中引导学生借助平方根的定义,平方根的符号表示,开平方运算,自己给立方根下定义,给出立方根的符号表示和什么叫开立方运算探索活动问题一根据立方根的定义,你能举出某个数的立方根吗?你能用符号表示吗?例题求下列各数的立方根(1)-64 () () ()问题一根据计算结果,与平方根作比较有什么不同?与同学交流巩固练习、下列说法正确的是().任意数的平方根有个,它们互为相反数.任意数的立方根有个.是的负的立方根.()的立方根是、下列判断正确的是().
10、的立方根是.的立方根是. 的立方根是.如果,则、求下列各式中的思维拓展,运用新知、讨论等于多少?等于多少?等于多少? 等于多少?、练习1011课堂小结,内化新知立方根和平方根有何异同?利用立方根概念进行有关计算布置作业填空题(1 )的立方根是 ,0.0027的立方根是 (2)已知,则= (3) , (4) , 选择题(1)-8的立方根用符号表示,正确的是( )a b c d (2)若,则与的关系是( )a b c d 求下列各式中的x(1) (2) 第一章 实数 第三节 实数 第1课时 总第4课时一、教学目标:1.知道无理数是客观存在的,了解无理数和实数的概念,能对实数按要求进行分类同时会判断
11、一个数是有理数还是无理数。2.知道实数和数轴上的点一一对应。3.经历用有理数估算的探索过程,从中感受“逼近”的数学思想,发展数感,激发学生的探索创新精神。二、教学重点与难点:重点:会判断一个数是有理数还是无理数。难点:不是有理数,有多大?三、教学方法:观察、比较、合作、交流、探索.四、教学过程。(一)创设情境情境一:提出问题我们通过研究边长为1的正方形的对角线的长为,说说你对的认识。设计说明:由学生熟知的实例提出问题,从而激发学生的学习兴趣和求知欲。情境二:大家都知道2是一个有理数,它的算术平方根为多少?还是一个有理数吗?设计说明:通过提出问题和解决问题,让学生感受的客观存在性,同时又产生一个
12、疑问,从而会主动探索研究这个新问题,直至完全没有疑问。情境三:为了生活的需要人们引入了负数,数就由原来的正数和0扩充为有理数。细心的同学会发现还有一些不是有理数的数,和有理数一起构成了实数,它们到底是什么数呢?引出课题:实数。设计说明:让学生明白引入负数和引入无理数一样,都是生活的需要,同时说明了它们的客观性,同时告诉学生作好准备,迎接新的“挑战”。(二)探索活动问题1:是有理数吗?设计说明:有理数范围很大,不少学生想到:整数和分数统称有理数,自然会将此问题变成两个小问题:是整数吗?是分数吗?若两者都不是,就说明不是有理数。问题2:是一个整数吗?设计说明:从说说对的认识中部分学生就认识到不是整
13、数,如:用刻度尺测量,可知约等于1.4;在等腰直角三角形中,斜边大于直角边,可知大于,三角形中两边之和大于第三边,可知,所以,而在1与2之间没有整数。问题3:是1与2之间的一个分数吗?(也就是1与2之间的分数的平方会等于吗?)问题4:有多大?设计说明:问题2是定性的研究,问题3上升到定量的研究更精确的描述。学生借助研究问题2的思路容易整理出研究问题3的思路。教学中要鼓励学生进行探索,在探索中体会“无限”的过程。(三)课堂反馈例题1、把下列各数填入相应的集合内:、 有理数集合 无理数集合 正实数集合 负实数集合 练习三:课本练习p15设计说明:在例题后安排了一组练习,练习一主要是对有关概念的强化
14、,练习二主要是通过学生对概念的进一步理解,比较和判断,提高他们的是非辨别力,它是在课本练习第2题的基础上增加了几个问题,其目的是通过一组判断题,帮助学生澄清概念,杜绝两者混淆。练习三可留作课后思考,时间允许的话最好课内解决,先让学生独立思考,然后小组讨论,教师也要参与,这种合作学习不仅可以激活学生的思维,培养合作精神,而且有助于因材施教,可以弥补教师难以面对有差异的众多学生的不足,有助于每个学生的全面及自主发展。(四)课堂小结怎样的数是无理数?请举例说明(五)布置作业课本习题p18 t1,2 第一章 实数 第三节 实数 第2课时 总第5课时教学目的:1、了解有理数的运算在实数范围内仍然适用,能
15、用有理数估计一个无理数的大致范围。2、理解有效数字的概念,会根据要求进行近似值的运算。3、能利用计算器比较实数的大小,进行实数的四则运算。4、通过用不同的方法比较两个无理数的大小,理解估算的意义、发展数感和估算能力,在运用实数运算解决实际问题的过程中,增强应用意识,提高解决问题的能力,体会数学的应用价值。二、教学重点和难点: 重点:在实数范围内会运用有理数运算。 难点:用有理数估算一个无理数的大致范围。三、教学方法:观察、比较、合作、交流、探索.四、教学过程: 回顾旧知 在有理数范围内绝对值、相反数、倒数的意义是什么? 比较两个有理数的大小有哪些方法? 你能借用有理数范围内的规定举例说明无理数
16、的绝对值、无理数的倒数、两个无理数互为相反数吗?设计说明:回顾(2)后,教师应指出实数的绝对值、相反数、倒数与有理数范围内的意义完全相同,并且有理数大小比较的方法、运算性质及运算律在实数范围内仍然适用,通过回顾旧知,在此基础上学生更易接受新知,把握新知和运用新知。 探求新知问题1、比较与的大小,说说你的方法。设计说明:问题1起着承上启下的作用,在比较的过程中,学生可能有各种不同的方法,教师要鼓励学生进行充分的交流。问题2、你还会比较与的大小吗?问题3、你认为 与哪个大?你是怎么想的?与同学交流。问题4、通过估算,你能比较与的大小吗?设计说明:教师应先让学生独立思考,然后进行充分的交流,在交流中
17、应更多的关注学生能否运用有理数估算一个无理数的大致范围,把握数的相对大小,同时理解一些比较两个数大小的方法:(1)、通过估算 (2)作差 (3)作商 (4)利用已有的结论 (5)利用计算器。 例题教学例题1、利用计算器比较与的大小分析:两个负数比较大小,先比较其绝对植,大的反而小。此题需借助计算器。设计说明:有些简单的无理数,可通过估算直接比较大小,而有些无理数需借助高科产品,如计算器或计算机来完成,此题就属于后者,没有便用计算器的地区,可以考虑为学生提供常用数学表或提供相关数据。练习p15第2题设计说明:让学生学会用各种方法比较两个数的大小,练习二主要是对知识的应用,同时对学生提出了更高的要
18、求,会灵活运用各种方法比较两个数的大小,同根号的数可以将系数带进去后应比较根号里新数的大小,即互为相反数的两个数可以只估算其中一个数与1的大小关系,则另一个数与之相反,当然还可以借助其他工具(计算器或计算机或常用数学用表等)。例2,计算 (保留2位小数) (保留2位有效数字)设计说明:例1主要让学生会用计算器求一个无理数,例2是在例1的基础上增加了难度,对学生也提出了更高的要求,让学生学会用计算器求多个无理数的混合运算及实数运算,在实数运算中涉及无理数的计算,可根据问题的要要取其近似值转化成有理数进行计算,向学生说明:在计算过程中,取近似值时,可以按照计算结果要求的精确度,多保留一位。有效数字
19、是指从一个数的第一个非零数字开始,一直到数的结尾,所有的数字称之为这个数的有效数字。有效数字有包括数字左端的0。练习:课本p17练习设计说明:此练习主要是对刚学过知识的强化,教师应针对不同层次的学生提出不同的要求。 课堂小结说说你是如何估算一个无理数的大小,你在生活中见过估算的方法吗?或举例说明请你尝试用估算的方法比较与的大小我们经历了多次数的扩充,每一次扩充都保持了原有的运算法则和运算性质,从中我们可以体会到数学的和谐 布置作业,巩固新知课本p18 习题1.3 t3,4,5第一章 实数 第四节 平面直角坐标系 第1课时 总第6课时教学目标:1、知识目标:认识平面直角坐标系,知道点的坐标及象限
20、的含义。2、能力目标:能够在给定的直角坐标系中,根据点的坐标指出点的位置,会由点的位置写出点的坐标。3、情感目标:经历画坐标系,由点找坐标等过程,让学生进一步感受“数形结合”的数学思想,感受“类比”和“坐标”的思想,体验将实际问题数学化的过程与方法。教学重点:平面直角坐标系教学难点:确定点的坐标教学方法:观察、比较、合作、交流、探索.教学过程:一、复习铺垫1、什么是数轴?2、数轴上的点与_实数一一对应。bac-5-4-2-3-143210653、写出数轴上a、b、c各点的坐标。二、探究活动中山路中山路城市客厅国际饭店商业城解放路解放路1、想一想:在教室里怎样确定一个同学的位置?2、电影票上至少
21、要有几个数字才能确定你的位置?3、怎样表示平面内的点的位置?(小明和小亮是网上认识的好朋友,今年暑假,小亮邀小明到他家所在的镇江市去玩,他发了e_mail给小明:我家在镇江市中山路南边20米,解放路西边50米。你能根据小亮的提示从右图中找出他家的位置吗?想一想:1、小亮是怎样描述他家的位置的?2、小亮可以省去“南边”和“西边”这几个字吗?3、若小亮说在“中山路南边、解放路东边”,你能找到他家吗?4、若小亮只说在“中山路南边20米”或只说在“解放路西边50米“,你能找到他家吗?三、新知要点平面上有公共原点且互相垂直的两条数轴构成平面直角坐标系,简称直角坐标系。水平方向的数轴称为x轴或横轴,竖直方
22、向的数轴称为y轴或纵轴,它们统称坐标轴。公共原点o称为坐标原点。四、确定点的位置1、若平面内有一点p(如图),我们应该如何确定它的位置?(过点p分别作x、y轴的垂线,将垂足对应的数组合起来形成一对有序实数,即为点p的坐标,可表示为)2、若已知点q的坐标为,该如何确定点p的位置?(分别过x、y轴上表示的点作x、y轴的垂线,两线的交点即为点q)例:分别在平面内确定点、的位置,并确定点c、d、e的坐标。五、练习:(判断:)对于坐标平面内的任一点,都有唯 一的有序实数对与它对应.( )在直角坐标系内,原点的坐标是0.( )六、课堂小结:今天我们学到了什么?1、怎样建立坐标系?2、怎样确定点的位置?3、
23、不同位置的点的坐标的特征。七、分别在坐标系中描出下列各点的位置:a(3,4)、b(5,4)、c(6,3)、d(4,)第一章 实数 第四节 平面直角坐标系 第2课时 总第7课时教学目标 1.建立适当的直角坐标系,描述物体的位置; 2.在直角坐标系中,会根据坐标描出点的位置. 3.经历画坐标系、描点、连线等过程,发展学生的数形结合的数学品质和合作交流的意识.教学重点:建立适当直角坐标系,描述物体的位置;教学难点:描点、连线.教学方法:合作、交流、探索.教学过程 一、导入新课 问题: 1.为什么叫做直角坐标系,画出直角坐标系.2.写出图中点a、b、c、d,e的位置. 二、师生活动 例:在平面直角坐标
24、系中描出下列各点: a(4,5),b(-2,3),c(-4,-1),d(2.5,-2),e(0,4). 分析:先在x轴上找出表示4的点,再在y轴上找出表示5的点, 过这两个点分别作x轴和y轴的垂线,垂线的交点就是a. 师生共同活动作出点a、b、c、d、e由学生独立完成. 探究:如图,正方形abcd的边长为6. (1)如果以点a为原点,ab所在的直线为x轴,建立平面坐标系,那么y 轴是哪条线? (2)写出正方形的顶点a、b、c、d的坐标. (3)请另建立一个平面直角坐标系,此时正方形的顶点a、b、c、d的坐标又分别是多少?与同学交流一下. 学生讨论、交流后,得到以下共识: y轴是ad所在直线.
25、a(0,0),b(0,6),c(6,6),d(6,0). 让部分学生描述,并投影作法,同学讨论. 建立的平面直角坐标系不同,则各点的坐标也不同. 三、巩固练习 教科书p21做一做;练习t1 四、作业 一、填空题. 1.若点满足,则点p在_. 2.在平面直角坐标系中,顺次连结a(-3,4),b(-6,-2),c(6,-2),d(3,4)四点, 所组成的图形是_. 3.若线段ab的中点为c,如果用(1,2)表示a,用(4,3) 表示b, 那么c 点的坐标是_. 4.若线段ab平行x轴,ab=5,a的坐标为(4,5),则b的坐标为_.二、解答题. 1.在图直角坐标系中描出下列各组点,并将各组点用线段
26、依次连结起来,观察所得到的图形,你觉得它像什么? (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5); (2)(-9,3),(-9,0),(-3,0),(-3,3); (3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9); (4)(3,7),(1,5)(2,5),(5,5),(6,5),(4,7); (5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5). 2.如图长方形abcd的长和宽分别是6和4.以c为坐标原点,分别以cd、cb所在的直线为x轴、y轴建立直角坐标,则长方形各
27、顶点坐标分别是多少?第一章 实数 第四节 平面直角坐标系 第3课时 总第8课时教学目标1、能根据坐标描出点的位置;2、能建立适当的平面直角坐标系描述物体的位置;3、能根据点的位置关系探索坐标之间的关系,以及根据坐标之间的关系探索点的位置关系教学重点:根据点的坐标在直角坐标系中描出点的位置。教学难点:探索特殊的点与坐标之间的关系。教学方法: 观察、比较、教学过程一、提出问题1、在图1的平面直角坐标系、中,你能说出三角形abc三个顶点a,b,c的坐标吗?2、思考:在上面的问题中,点b和点c的坐标之间有什么关系?每一个点的横坐标与纵坐标的符号与什么有关?设计意图:设计这两个问题,一方面是复习上一节课
28、的知识,一方面又为本节课的学习做准备 由于本节课是建立在上一节课的基础之上的,因此以复习的方式来引入新知的学习,也不失为一种好的方法。二、学习新知1、象限的概念:以教师讲解的方式介绍四个象限的概念,如图2注意:坐标轴上的点不属于任何象限。2、探究点的位置与它的坐标的符号之间的关系 分组讨论:(1)四个象限内的点的坐标的符号有什么规律?(2)从上表中你还能发现什么规律? 最后归纳出一、二、三、四象限内点的坐标的符号分别是(,),(,),(,),(,)同时还可以让学生说出:x轴的正半轴上的点的横坐标为正数,纵坐标是零设计意图:通过学生自己的探究,既有利于对四个象限概念的理解,又有利于对点的坐标的理
29、解。3、口答:分别说出下列各个点在哪个象限内或在哪条坐标轴上? a(6,2),b(0,3),c(3,7),d(6,3)e(2,0),f(9,5)设计意图:这里安排一组口答练习,是为了及时运用前面的规律,培养学生的空间想象能力;二是为下面例题的学习做准备。三、探究活动活动一:教材第24页的“做一做” 处理方法:先让学生独立尝试,然后小组内交流,最后教师进行归纳:用方位角与距离也可以描述点的位置。活动二:在方格纸上分别描出下列点的坐标,看看这些点在什么位置上,由此你有什么发现?a(2,3),b(2,1),c(2,7),d(2,0),e(2,5),f(2,4)设计意图:活动二主要是让学生发现与y轴平
30、行的直线上的点的坐标的特征。四、巩固新知在平面直角坐标系中描出下列各点:a(3,1),b(3,2),c(0,2),d(3,2),e(3,1),f(0,1).并用线段顺次连接各点,看看你画出的图形是什么形状?五、总结归纳:让学生围绕教师的问题进行回答: 1、本节课学习了哪些知识和方法? 2、你认为应该注意哪些方面的问题? 3、你有什么收获?六、布置作业必做题:教材1.4习题a组教材1.4习题b组第1章 实数 小结与复习 第1、2课时 总第9、10课时一. 教材分析: 本章是学习二次根式,一元二次方程的预备知识。在中招考试中多以填空、选择形式出现,有的与后续知识综合出现。本章的概念多,并且比较抽象,但却是以后学习的基础,一定要好好掌握。二. 复习目标: 1. 进一步巩固实数的定义性质及其运算规律。 2. 熟练使用计算器求一些数值的估算值。 3. 能运用实数运算解决简单的实际问题,提高应用能力。三. 重点、难点 1. 重点是无理数、平方根、算术平方根、立方根及实数的定义与性质,以及实数的运算法则。 2. 难点是利用平方根、算术平方根、立方根及实数运算法则的进行有关计算题目,特别是平方根与算术平方根的不同之处。四、教学方法:复习、练习、讨论。五、 复习内容(一)基本知识回顾 实数的应用 1. 无理数的引入。无理数的定义无限不循环小数。 六.练习(一)填空题(每空格3分,共3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海外工程项目施工人员劳务派遣与保障协议
- 外资企业拉美市场运营专员职务聘任与培训合同
- 网络内容安全审查算法技术许可及数据共享合同
- 数据安全忠诚度保障协议及知识产权保护
- 传染病预防措施
- 外科护理胸部损伤
- 护理安全案例分析
- 2026届高考语文作文模拟写作:等风与追风
- 肿瘤护士进修体系构建
- 剖宫产患者的对症护理
- 桌面运维工程师能力试卷试卷题库面试版本
- 工业园区物业保洁工作作业指导手册
- 全产业链运营模式
- 消防安全工作例会制度
- GB/T 9634.4-2007铁氧体磁心表面缺陷极限导则第4部分:环形磁心
- 2022年阜宁县(中小学、幼儿园)教师招聘考试《教育综合知识》试题及答案解析
- GB/T 15608-2006中国颜色体系
- 95598工单大数据分析及压降策略
- 《游园不值》-完整版课件
- 大连银行招聘考试最新笔试复习材料题目内容试卷真题复习
- 卷烟纸生产工艺
评论
0/150
提交评论