版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.全等三角形知识要点1判定和性质一般三角形直角三角形判定边角边(SAS)、角边角(ASA)角角边(AAS)、边边边(SSS)具备一般三角形的判定方法斜边和一条直角边对应相等(HL)性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等注: 判定两个三角形全等必须有一组边对应相等; 全等三角形面积相等2证题的思路:3 请填空 1) 全等形的概念 两个_的图形叫全等形。 2) 全等形的性质 全等图形的_和_都相同。 3) 全等三角形的判定_4)角平分线的性质 角平分线的性质:_5)角
2、平分线的判定 角平分线的判定的判定定理:_6)三角形角平分线的性质 三角形的三条内角平分线交于一点,并且这一点到三条边的距离相等。题型汇总一、填空题(3分×10=30分)题型:边角边证明三角形全等1 如图(1),ABC中,AB=AC,AD平分BAC,则_6.如图4,已知AB=BE,BC=BD,1=2,那么图中 ,AC= ,ABC= .ABCDE4、如右图,ABAD ,BADCAE,AC=AE ,求证:CB=ED5、已知:如图,ABCD,ABDC求证:,ADBC, ADBC 11、如图,D、E在BC上,且BD=CE,AD=AE,ADE=AED,求证:AB=AC。AB
3、CD1、如右图,已知AB=AD,且AC平分BAD,求证:BC=DC题型:角角边证明三角形全等4如图(3),若1=2,C=D,则ADB_,理由_6如图(5),AB=AC,BDAC于D,CEAB于E,交BD于P,则PD_PE(填“<”或“>”或“=”)题型:角边角证明三角形全等5如图(4),C=E,1=2,AC=AE,则ABD按边分是_ 三角形19(5分)已知EF是AB上的两点,AE=BF,ACBD,且AC=DB,求证:CF=DE 题型:边边边证明三角形全等7如图(6),ABC中,AB=AC,现利用证三角形全等证明B=C,若证三角形全等所用的公理是SSS公理,则图中所添加的辅助线AD应
4、是_题型:HL定理证明三角形全等2已知:点 A、C、B、D在同一条直线,AC=BD,M=N=90°,AM=CN求证: MBND题型:角平分线的应用7、如图,在ABC中,C=90°,AD平分BAC,BC=10cm,BD=6cm,则点D到AB的距离为_。12、如图,BD=CD,BFAC,CEAB,求证:点D在BAC的平分线上。18.如图21,AD平分BAC,DEAB于E,DFAC于F,且DB=DC,求证:EB=FC(12分)ABCO29.如图,在ABC中,B和C的平分线相交于点O,且OB=OC,请说明AB=AC的理由。(分)题型:根据三角形全等求边长,面积,角的大小2已知ABC
5、DEF,DEF的周长为32 cm,DE=9 cm,EF=12 cm则AB=_,BC=_,AC=_8一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=_10.在ABC中,AB=AC,A=,将ABC绕点B旋转,使点A落在BC上,点C落在点,那么BC的大小是_.14. 如图(11)所示,若ABEACF,且AB5,AE2,则EC的长为( )A.2 B.3 C.5 D.2.5图11FECBA15如图(12),ABCAEF,AB和AE,AC和AF是对应边,那么EAC等于AACBBBAFCFDCAF16如图(13),ABC中,C=90°,AC=BC,AD平
6、分CAB交BC于D,DEAB于E且AB=6 cm,则DEB的周长为A40 cmB6 cmC8 cmD10 cm2.如图1,已知OCAOBD,C和B、D和A是对应顶点,这两个三角形中相等的角是 ,相等的边是 . 3.如图2,已知ABCADE,B与D是对应角,那么AC与 是对应边,BAC与 是对应角.5.如图3,已知D在BC边上,DEAB于E,DFAC于F,DE=DF,B=50°,C=70°,那么DAF= ,ADE= .8.如图5,已知ABCDEF,对应边AB=DE, ,对应角B=DEF, .9.如图6,已知ABCDEC,其中AB=DE, ECB=30°,那么ACD=
7、 .1、如图,ABCBAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是( )。 A 4cm B 5cm C 6cm D 无法确定2、如图,ABEACD,AB=AC,BE=CD,B=50°AEC=120°,则DAC的度数等于( )。 A 120° B 70° C 60° D 50°6、如图,AC、BD相交于点O,AOBCOD,A=C,则其他对应角分别为_,对应边分别为_。9、如图,ACBD于O,BO=OD,图中共有全等三角形_对。1、如图1,在ABC中,AC>BC>AB,且A
8、BCDEF,则在DEF中,_<_<_(填边)。2、已知:ABCABC,A=A,B=B,C=70°,AB=15cm,则C=_,AB=_。3、如图2,ABDBAC,若AD=BC,则BAD的对应角是_。5、如图4,在ABC中,AB=AC,ADBC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形_对。3 如图,ABCDEF,A=70°,B=50°,BF=4,求DEF的度数和EC的长。(10分)2. 已知:如图2,ABCDEF,ACDF,BCEF.则不正确的等式是( )A.AC=DF B.AD=BE C.DF=EF D.BC=EF12. 如图,在ABC
9、中,C90°,AD是BAC的角平分线,若BC5,BD3,则点D到AB的距离为.ACBDE题型:添加条件证明三角形全等3.如图(2),AC=BD,要使ABCDCB还需知道的一个条件是_9如图(7),AD=AE,若AECADB,则可增加的条件是_,或_,或_.13ABC和DEF中,AB=DE,A=D,若ABCDEF还需要 ( )AB=EBC=F CAC=DFD以上三种情况都可以10.如图7,已知ABAD,12,要使ABCADE,还需添加的条件是 。(只需填一个)ABCDE12图711如图,BE=CF,AB=DE,添加下列哪些条件可以推证ABCDFE (
10、 ) (A)BC=EF (B)A=D (C)ACDF (D)AC=DF4、在ABC和中,已知A=,AB=,在下面判断中错误的是( )。 A 若添加条件AC=,则ABC B 若添加条件BC=,则ABCC 若添加条件B=,则ABCA 若添加条件C=,则ABC8、如图,1=2,要使ABEACE,还需添加一个条件是_,(填上你认为适当的一个条件即可)。4、如图3,在ABC和FED,AD=FC,AB=FE,当添加条件_时,就可得到ABCFED。(只需填写一个你认为正确的条件)11.如图:已知AEBF, E=F,要使ADE
11、BCF,可添加的条件是_.ACFBED 题型:理论题11不能确定两个三角形全等的条件是 ( )A三边对应相等B两边及其夹角相等C两角和任一边对应相等D三个角对应相等12用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的识别方法是( ) A.SAS B.ASA C.AAS D.SSS18在ABC和ABC中AB=AB BC=BCAC=ACA=AB=BC=C,则下列哪组条件不能保证ABCABC( )A具备B具备C具备D具备20(5分)一块三角形玻璃损坏后,只剩下如图(16)所示的残片,你对图中作哪些数据测量后就可到建材部门割取符合规格的三角形玻璃并说明理由 1.判定一般三角形全等的方法有
12、等四种,判定直角三角形全等的方法还有 .7.到一个角两边距离相等的点,在 .13在ABC内部取一点P使得点P到ABC的三边距离相等,则点P应是ABC的哪三条线交点( )(A)高 (B)角平分线 (C)中线 (D)垂直平分线14下列结论正确的是( )(A)有两个锐角相等的两个直角三角形全等(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.4.ABC的角平分线AM、B
13、N交于I点,那么I点到 边的距离相等,连结CI,那么CI一定平分 .16已知,如图,ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个 ( )(1)AD平分EDF;(2)EBDFCD; (3)BD=CD;(4)ADBC(A)1个 (B)2个 (C)3个 (D)4个3、使两个直角三角形全等的条件是( )。 A 一锐角对应相等 B 两锐角对应相等 C 一条边对应相等 D 两条边对应相等题型:综合体21(8分)如图(17),在ABC中,AM是中线,AD是高线图(17)(1)若AB比AC长5 cm,则ABM的周长比ACM的周长多_ cm(2)若AMC的面积为10 cm2,则ABC的面积为_cm 2(3)若AD又是AMC的角平分线,AMB=130°,求ACB的度数22(10分)已知如图(18),B是CE的中点,AD=BC,AB=DCDE交AB于F点求证:(1)ADBC (2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025上海市老年医学中心招聘工作人员98人笔试考试参考试题及答案解析
- 2025-2030中国药物筛选行业监管政策变化及企业应对策略报告
- 一年级数学(上)计算题专项练习集锦
- 五年级数学(小数四则混合运算)计算题专项练习及答案
- 第7单元 23梅兰芳蓄须(教学设计)2024-2025学年四年级语文上册同步教学(统编版)
- 2025下半年四川乐山市市中区考核招聘卫生专业技术人员24人笔试考试备考试题及答案解析
- 4.2电流的测量教学设计-2023-2024学年浙教版八年级上册科学
- 2025年河北邯郸馆陶县补充公开招聘教师8名考试笔试模拟试题及答案解析
- 技术文档编写与项目交付清单模板
- 大气环境质量改善监测承诺书7篇
- 国家级紧急医学救援队伍建设规范
- 氧化还原反应应用课件
- 食材配送服务方案投标方案【修订版】(技术标)
- 房地产行业广告违禁词包括
- 宁夏红墩子煤业有限公司红二煤矿环评上报版
- GB/T 43731-2024生物样本库中生物样本处理方法的确认和验证通用要求
- 人教版九年级英语全册词性转换1-14单元
- 心理app创业计划书
- 机器学习行业进修汇报
- 巨乳缩小整形术护理查房课件
- 环境相关法律法规合规性评价记录表(环境管理体系合规评价)
评论
0/150
提交评论