




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 高考数学分类复习专题复习资料 理科概率一:填空题1 若的展开式中含有常数项,则最小的正整数 等于 2 已知,则的值等于3从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( )4的展开式中常数项为 5、 的展开式中,常数项为,则6 从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种(用数字作答)7甲、乙两个袋中装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球现分别从甲、
2、乙两袋中各随机取出一个球,则取出的两球是红球的概率为 (答案用分数表示)。8.已知一盒子中有散落的围棋棋子10粒,其中7粒黑子,3粒白子,从中任意取出2粒,若表示取得白子的个数,则E= 例1书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。 (1)若从这些书中任取一本,有多少种不同的取法? (2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法? (3)若从这些书中取不同的科目的书两本,有多少种不同的取法。例27人排成一行,分别求出符合下列要求的不同排法的种数。 (1)甲排中间;(2)甲不排两端;(3)甲,乙相邻; (4)甲在乙的左边(不要求相邻);(5)甲,乙,丙
3、连排; (6)甲,乙,丙两两不相邻。例3用0,1,2,3,4,5这六个数字组成无重复数字的五位数,分别求出下列各类数的个数: (1)奇数;(2)5的倍数;(3)比20300大的数; (4)不含数字0,且1,2不相邻的数。二:解答题1篮球运动员在比赛中每次罚球命中得分,罚不中得分。已知某运动员罚球命中的概率为,求他罚球次(每次罚球结果互不影响)的得分的数学期望。1 / 62甲、乙、丙3人投篮,投进的概率分别是,且甲、乙、丙之间没有影响。(1) 3人各投篮次,求甲、乙、丙3人都没有投进的概率。(2)3人各投篮次,求甲、乙、丙3人中至少有一个人投进的概率。(3)用表示乙投篮3次的进球数,求随机变量概
4、率分布及数学期望E。3有7个大小相同的球,其中有2个2号球,2个4号球,1,3,5号球各一个,从中任取三个球,表示3个球中球号最大的球的号数。(1) 求=4的概率。(2)求的分布列及期望。4从4名男生和2名女士中选取3人参加演讲比赛,设随机变量表示所选3人中女生的人数,(1)求1的概率。(2)求的分布列及期望。5中国篮球职业联赛的总决赛在甲队与乙队之间角逐,采用七局四胜制,即若有一队先胜四场,则此队获胜,比赛就此结束据以往资料统计,第一场比赛组织者可获门票收入30万元,以后每场比赛门票收入比上一场增加10万元,当两队决出胜负后,问:()组织者在此次决赛中要获得门票收入180万元需比赛多少场?(
5、)因甲、乙两队实力相当(即甲队获胜的概率为0.5,乙队获胜的概率也为0.5,没有平局,问组织者在此次决赛中获得门票收入不少于330万元的概率为多少?并求此时需要比赛的次数的分布列及期望。6一个袋子中有4个红球和3个黑球,现从该袋中取出4个球,规定取到一个红球得3分,取到一个黑球得1分,记所取球的得分为.()求的概率。() 求随机变量的数学期望.7在一个盒子中,放有标号分别为,的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为、,记()求随机变量的最大值,并求事件“取得最大值”的概率;()求随机变量的分布列和数学期望8一个口袋中装有大小相同的2个白球和3个黑球.()采取不放回抽样方
6、式,从中摸出两个球,求两球恰好颜色不同的概率;()采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;()采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的期望和方差.9某气象站天气预报的准确率为,计算(结果保留到小数点后第2位):(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率10下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据34562.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程
7、;(3)已知该厂技改前吨甲产品的生产能耗为吨标准煤试根据(2)求出的线性回归方程,预测生产吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:)用最小二乘法求线性回归方程系数公式,11. 某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响(I)任选1名下岗人员,求该人参加过培训的概率;(II)任选3名下岗人员,记为3人中参加过培训的人数,求的分布列和期望12、某商场经销某商品,根据以往资
8、料统计,顾客采用的付款期数的分布列为123450.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元表示经销一件该商品的利润()求事件:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率;()求的分布列及期望13. 从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率(1)求从该批产品中任取1件是二等品的概率;(2)若该批产品共100件,从中任意抽取2件,表示取出的2件产品中二等品的件数,14. 设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计)()求方程有实根的概率;()求的分布列和数学期望;()求在先后两次出现的点数中有5的条件下,方程有实根的概率,15某气象站天气预报的准确率为,计算(结果保留到小数点后第2位):(1)5次预报中恰有2次准确的概率;(4分)(2)5次预报中至少有2次准确的概率;(4分)(3)5次预报中恰有2次准确,且其中第3次预报准确的概率(4分)16. 在医学生物试验中,经常以果蝇作为试验对象一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源汽车技术与应用考试试卷及答案
- 2025年汽车驾驶员(高级)证考试题库及答案
- 阿坝藏族羌族自治州2025-2026学年七年级上学期语文月考模拟试卷
- 安徽省淮北市杜集区2023-2024学年高一下学期期末考试历史题库及答案
- 安徽省安庆市宿松县2024-2025学年高一下学期期末考试化学题库及答案
- 2025 年小升初哈尔滨市初一新生分班考试语文试卷(带答案解析)-(人教版)
- 2025年教师节感恩老师演讲稿13篇
- 社区消防知识培训课件要点
- 上海市上海师范大学附属金山前京中学2024-2025学年七年级下学期期中考试英语试题(含答案无听力音频及原文)
- 福建省龙岩市非一级达标校2024-2025学年高一上学期11月期中考试历史试卷(含答案)
- 住院病人防止走失课件
- 2024年重庆永川区招聘社区工作者后备人选笔试真题
- 医学技术专业讲解
- 2025年临床助理医师考试试题及答案
- 唯奋斗最青春+课件-2026届跨入高三第一课主题班会
- 2025民办中学教师劳务合同模板
- 2025年南康面试题目及答案
- 2025年事业单位考试贵州省毕节地区纳雍县《公共基础知识》考前冲刺试题含解析
- 高中喀斯特地貌说课课件
- 黄冈初一上数学试卷
- 2025年中国花盆人参行业市场发展前景及发展趋势与投资战略研究报告
评论
0/150
提交评论