




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、colleen beaudoinfebruary, 2009review: the geometric definition relies on a cone and a plane intersecting italgebraic definition: a set of points in the plane such that the difference of the distances from two fixed points, called foci, remains constant.xyfrom each point in the plane, the difference
2、of the distances to the foci is a constant. example:f1f2d1d2focipoint a: d1-d2 = c point b: d1-d2 = c bad1d2xyf1f2focicentertransverse axisconjugate axisverticesalgebraic definition of a hyperbola: a set of points in the plane such that the difference of the distances from two fixed points, called f
3、oci, remains constant.how is the definition similar to that of an ellipse?how is it different?qboth variables are squared. qequation: qcompare the equations of ellipses and hyperbolas.qwhat makes the hyperbola different from the parabola?qwhat makes the hyperbola different from a circle?22222222( -
4、)( - )( - )( - )1 or x hy ky kx hababprocedure to graph:1. put in standard form (above): x squared term - y squared term = 12. determine if the hyperbola is opening vertically or horizontally. (if x is first, its horizontal. if y is first, its vertical.)3. plot the center (h,k)4. plot the endpoints
5、of the horizontal axis by moving “a” units left and right from the center.22222222( - )( - )( - )( - )1 or x hy ky kx habbato graph:5. plot the endpoints of the vertical axis by moving “b” units up and down from the center.note: the line segment that contains the vertices of the hyperbola is known a
6、s the transverse axis. the other axis is the conjugate axis.6. draw a rectangle such that each of the axis endpoints is the midpoint of a side.22222222( - )( - )( - )( - )1 or x hy ky kx habbato graph:7. sketch the diagonals of the rectangle and extend them outside of the rectangle. (these are the a
7、symptotes of the hyperbola.)8. draw each branch of the hyperbola be sure to go through the vertex of each (the endpoint of the transverse axis) and approach the asymptotes.22222222( - )( - )( - )( - )1 or x hy ky kx habbato graph:9. use the following formula to help locate the foci: c2 = a2 + b2 mov
8、e “c” units left and right form the center if the transverse axis is horizontal or move “c” units up and down form the center if the transverse axis is verticallabel the points f1 and f2 for the two foci.note: it is not necessary to plot the foci to graph the hyperbola, but it is common practice to
9、locate them. 22222222( - )( - )( - )( - )1 or x hy ky kx habbathe equation of each asymptote can be found by using the point-slope formula. use the center as “the point” and slope can be found by counting on the graph (from the point to the corner of the rectangle).or the following formulas can be u
10、sed:with horizontal transverse axis: bby = k + (x - h) and y = k - (x - h)aawith vertical transverse axis: aay = k + (x - h) and y = k - (x - h)bb1. put in standard form. done2. determine if the hyperbola is opening vertically or horizontally. vertically because “y” is first.3. identify the center.
11、(0,0)4. identify the endpoints of the horizontal axis. (6,0) and (-6,0)5. identify the endpoints of the vertical axis. (0,8) and (0,-8) which pair of endpoints are the vertices? (0,8) and (0,-8)2216436yx6. draw a rectangle such that each of the axis endpoints is the midpoint of a side.7. sketch the
12、asymptotes of the hyperbola.8. draw each branch of the hyperbola be sure to go through the vertex of each (the endpoint of the transverse axis) and approach the asymptotes.2216436yx9. locate the foci. (0,10) and (0,-10) 10. find the equations of the asymptotes. 2216436yx44 and 33yxyx xytransverse ax
13、isconjugate axiscenterasymptotes2216436yx 22(3)(2)13616xy1. put in standard form. done2. determine if the hyperbola is opening vertically or horizontally. horizontally because “x” is first.3. identify the center. (3,-2)4. identify the endpoints of the horizontal axis. (-3,-2) and (9,-2)5. identify t
14、he endpoints of the vertical axis. (3,2) and (3,-6) which pair of endpoints are the vertices? (-3,-2) and (9,-2)6. draw a rectangle such that each of the axis endpoints is the midpoint of a side.7. sketch the asymptotes of the hyperbola.8. draw each branch of the hyperbola be sure to go through the
15、vertex of each (the endpoint of the transverse axis) and approach the asymptotes.22(3)(2)13616xy9. locate the foci. (3+213,-2) and (3-213,-2)10. find the equations of the asymptotes. 44 and 33yxyx22(3)(2)13616xy22(3)(2)13616xy xy22464yx2216416yx1. put in standard form. 2216416yx xywrite the equation for a hyperbola with x-intercepts at 5 and -5 and foci (6,0) and (-6,0).1)how can you tell if the graph of an equation will be a line, parabola,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重难点解析人教版八年级物理上册第5章透镜及其应用章节测评试卷(含答案详解)
- 制造业供应链数字化转型组织学习机制考核试卷
- 厌氧消化微生物调控技术考核试卷
- 重难点解析人教版八年级物理上册第4章光现象-光的色散单元测试试题(含详解)
- 建筑信息模型(BIM)运维数据管理考核试卷
- 18.2025年传媒行业数字版权保护水平考试-版权集体管理组织数字化服务优化考核试卷
- 考点解析人教版八年级上册物理物态变化《熔化和凝固》综合测试试题(详解)
- 解析卷人教版八年级物理上册第5章透镜及其应用-5.5显微镜和望远镜综合测试试卷(解析版)
- 难点解析人教版八年级物理上册第6章质量与密度-密度专项训练试题(含答案及解析)
- 解析卷-人教版八年级物理上册第5章透镜及其应用难点解析试题(含答案解析版)
- 台球助教培训课件
- 麻醉疼痛护理科普知识精讲
- T/CMA-RQ 120-2023燃气表检测用光学接口及通信协议
- 2025年乡村振兴战略技能知识考试题与答案
- 2024年天津自然博物馆招聘制社会化工作人员考试真题
- 软件外包项目管理制度
- 护工服务的流程与质量管理
- 2025年护理文书书写规范
- 中国妊娠期糖尿病母儿共同管理指南2024版解读
- DBJ33T 1275-2022 钢结构工程施工质量验收检查用表标准
- 《铁路轨道维护》课件-有砟道床外观作业
评论
0/150
提交评论