版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、13.3等腰三角形1.等腰三角形的性质【教学目标】知识与技能了解等腰三角形、等边三角形的概念,掌握等腰三角形、等边三角形的性质,且能熟练应用其性质求角的度数.过程与方法经历观察、实验、推理、归纳等活动,探索等腰三角形及等边三角形的性质.情感、态度与价值观在探索等腰三角形性质的过程中,感受数学逻辑推理的必要性,体会数学在现实生活中的广泛应用,认识到数学无处不在,提高学习数学的兴趣.【重点难点】重点等腰、等边三角形的性质.难点等腰、等边三角形性质的应用.【教学过程】一、创设情景,导入新课1.复习提问:向学生们出示几张精美的建筑物图片;问题:轴对称图形的概念?这些图片中有轴对称图形吗?2.引入新课:
2、再次通过精美的建筑物图片,找出里面的等腰三角形.二、师生互动,探究新知1.相关概念等腰三角形、腰、底边、底角、顶角.【教学说明】以多媒体图片中的等腰三角形让学生找出概念中的相关元素.2.探究等腰三角形的性质 【教师活动】动动手:让同学们做出一张等腰三角形的半透明的纸片,每个人的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?请你尽可能多的写出结论.【学生活动】操作、交流、选代表发言.【教师活动】在学生发言基础上归纳板书.重要性质性质1:等腰三角形的两底角相等.(简写成“等边对等角”)性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合.(简称“三
3、线合一”)【教师活动】完成下面的练习:1.abc中 ,ab=3,ac=7,则abc的周长是. 2.abc中,ab=ac,a=50°,则b=. 3.等腰abc中,a=40°,则b=. 4.abc中,d为bc的中点,b=40°,求bad的度数.【学生活动】独立完成,交流讲解.【教学说明】1.巩固定义,考虑三边关系;2.巩固等角对等边;3.同2.,注意分类,可能学生会写出两种结果,教师讲解,两种情况,三种结果,即70°,40°,100°.强调需要自己画图解题时,一定要三思而后行!4.巩固三线合一,注意其表达规范
4、准确.3.探究等边三角形的性质【教师活动】利用等腰三角形的性质,推理等边三角形内角有何关系?是多少度?【学生活动】独立完成,交流发言.【教师活动】板书:等边三角形三个角都相等并且每个角都是60°.【教学说明】较简单,但可巩固等腰三角形性质,教师可提问等边三角形三线有何关系?三、随堂练习,巩固新知如图,在abc中 ,ab=ac,d、e在bc上,且ad=ae,则bd=ce吗?为什么【答案】bd=ce,原因如下:过点a作ahbc于h,则ahde,因为ab=ac,ahbc,所以bh=ch,因为ad=ae,ahde,所以dh=eh,所以bh-dh=ch-eh,即bd=ce.四、典例精析,拓展新
5、知【例】如图,五边形abcde中,ab=ae,bc=de,abc=aed,点f为cd的中点,求证:afcd.证明:连结ac、ad,在abc与aed中,ab=ae,abc=aed,bc=de.abcaed(s.a.s.),ac=ad,f为cd的中点,afcd(三线合一).【教学说明】要引导学生,由cf=fd,要证明afcd,你想到它具备等腰三角形哪个性质的特征?怎么办?五、运用新知,深化理解【例】abc中,ab=ac,d是ba延长线上的一点,e在ac上,且ad=ae,求证:debc.证明:作afbc于f,ad=ae,d=1,ab=ac,2=3,2+3=d+1=2d,1=2,afde,debc.【
6、教学说明】让学生体会作辅助线是构造“三线合一”的基本图形的方法.六、师生互动,课堂小结这节课你学到了什么?有什么收获?有何困惑?与同伴交流,在学生交流发言的基础上教师进行归纳总结.【教学反思】本节课知识结构的安排以“问题情景获取新知应用与拓展”的模式展开,符合八年级学生的认知规律.本节课力求体现“学会学习,为终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,让学生在活动中获得知识,形成能力.整堂课以问题为思维主线,引导学生观察、探索、归纳、论证,充分体现探索的快乐与成功的乐趣.2.等腰三角形的判定【教学目标】知识与技能通过动手操作探索并掌握识别一个三角形是等腰三角形和
7、等边三角形的方法.过程与方法理解并掌握“等角对等边”,体会与“等边对等角”的互逆关系,能够利用三角形的识别方法去解决问题.情感、态度与价值观提高学生的动手能力,学会数学说理,发展初步的演绎推理能力,进一步体会等腰三角形的对称美.【重点难点】重点理解并掌握识别等腰三角形和等边三角形的方法.难点对边、角关系互相转化的理解及运用.【教学过程】一、创设情境,导入新课我们学过等腰三角形两底角相等,反过来,有两个角相等的三角形是等腰三角形吗?同学们画一画,量一量,你有什么结论,请表达.二、师生互动,探究新知1.等腰三角形的判定【教师活动】如何证明ab=acab、ac所在的两个三角形全等作adbc.【学生活
8、动】完成证明过程.【教学说明】可作adbc,ad平分bac.目的:构造两个三角形全等,可顺便问一下:可取ab的中点吗?(不行,边边角)【教师活动】教师归纳:如果一个三角形有两个角相等,那么它们所对的边也相等.(简写成“等角对等边”).那么证明一个三角形有几条途径?【学生活动】证边所在三角形有两个角相等;证边所在的两个三角形全等.2.等边三角形的判定【教师活动】由等腰三角形的判定方法可以直接得到等边三角形的判定吗?【学生活动】探索交流发言.【教师活动】归纳:三个角相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形(分两种情况分析).三、随堂练习,巩固新知在abc中,已知
9、a=50°,b=65°,你能判断abc的形状吗?为什么?【答案】因为c=180°-a-b,又a=50°,b=65°, 所以c=180°-50°-65°=65°,所以c=b,所以abc是一个等腰三角形.四、典例精析,拓展新知【例】如图,ob=oc,abo=aco,求证:ab=ac.【分析】连结bc,bo=ocobc=ocbabc=acbab=ac证明:连结bc,ob=oc,obc=ocb,又abc=acb,abc=acb,ab=ac.【教学说明】可能会出现连结oa,证明aboaco,教师指出犯了“边边角”错
10、误.灵活作辅助线构造等腰三角形的基本图形,教师强调构造等腰三角形几种情况“角平分线”+“平行线”等腰三角形;“角平分线”+“垂线”等腰三角形.五、运用新知,深化理解abc中,ad平分fac,adbc,ae是中线,求证:aead.【答案】略【教学说明】本题是典例探索的变式训练,旨在强化等腰三角形判定与性质的综合运用,注意运用两头凑的解题思想.六、师生互动,课堂小结这节课你学习了什么?有什么收获?有何困惑?与同伴交流,教师在学生发言的基础上归纳总结.【教学反思】本节课通过学生操作、观察、发现、论证得出等腰三角形的判定方法,进而利用等腰三角形的判定方法研究得出等边三角形的判定方法,知识上层层推进,方法上相互映衬,符合学生的认知规律,提高了课堂效率.本节课中等腰三角形的基本图形是学生解题的关键,教师积极
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年连江县辅警招聘考试题库完整参考答案详解
- 2025年海口辅警协警招聘考试真题含答案详解(考试直接用)
- 2025年深圳辅警招聘考试真题附答案详解
- 2025年百色辅警招聘考试题库及答案详解(必刷)
- 2025年阳泉辅警协警招聘考试真题及1套完整答案详解
- 2025年黔西南州辅警协警招聘考试真题附答案详解(培优b卷)
- 2025年那曲辅警招聘考试题库及一套完整答案详解
- 2025年长沙辅警招聘考试真题及答案详解(基础+提升)
- 2025维修服务合同范本
- 2025年铜仁辅警协警招聘考试备考题库及参考答案详解1套
- 2025年统编版小学语文四年级上册期中考试综合测试卷(附答案)
- 2025-2030基于数字孪生的焊接机器人虚拟调试平台建设实践
- 【高一上】河北省NT20联盟2025-2026学年高一10月联考语文试题含答案
- 放疗基本知识介绍教案(2025-2026学年)
- 厂房网状围墙施工方案
- 第5课运动塑造更强大脑教学设计人教版初中体育与健康八年级全一册
- 11.《牛郎织女》(二) 课件 2025-2026学年 统编版语文五年级上册
- 洁净煤发电技术
- 生物制药无菌操作规范方案
- 月子会所食品安全应急预案
- 2025年河南省西学中考试试题及答案
评论
0/150
提交评论