




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初中数学:北师大版数学九年级上册知识点知识点总结姓名:指导:日期:北师大版数学九上知识点汇总第一章特殊平行四边形(9课时)目标:经历菱形、矩形、亚方形概念的抽象过程,性质与判定的探索、猜测与证明的过程;理解菱形、矩形、正方形的概念,了解它们与平行I四边形之间的关系;证明菱形、矩形、正方形的性质定理及判定定理;探索并掌握直角二角形的性质定埋,直角三角形斜边上的中线等于斜边的一半。 菱形的性质与判定(3课时),矩形的性质与判定3课时,正方形的性 质与判定(2课时),回顾与思考(1课时);共9课时。1、菱形的性质与判定有一组邻边相等的平行四边形叫做菱形。菱形是轴对称图形。定理:菱形 的四条边相等一定
2、理:菱形的对循线互相垂直。定理:对角线互相垂直的 平行四边形是菱形。定理:四边相等的四边形是菱形.2、矩形的性质与判定有一个角是宜角的平行四边形叫做矩形。矩形是轴对称图形。定理:矩形 的四个角都是直角。定理:矩形的对角线相等。定理:直角三角形斜动k 的中线等于斜边的半*定理工对角线相等的平行四边形是矩形©定理: 有三个角是直角的四边形是矩形。3、正方形的性质与判定有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。正方形 既是矩形,又是菱形,它具有矩形与菱形的所有性质。正方形是轴对称图 形。定理;正方形的四个处都是直角,四条边相等。定理:正方形的对角 线相等且互相垂直平分。定理
3、.:对角线相等的菱形是正方形。定理:对角 线垂直的矩形是正方形。定理,有一个角是直M的菱形是止方形。第二章一元二次方程(11课时)目标:经历从具体情境中抽象出一元二次方程的过程;理解一元二次方程 相关的概念,理解配方法,能用配方法、公式法、因式分解法解数字系数 的一元二次方程,并在这个过程中体会转化的数学思想、;经历估计一元二 次方程解的过程;会用一元二次方程根的判别式判别方程是否有实数根和 两个实数根是否相等;了解一元二次方程的根与系数的关系;利用一元二 次方程解决实际问题°认识一元二次方程(2课时),用配方法求解一元二次方程(2课时),用 公式法求解一元二次方程(2课时)用因式分
4、解法求解一元二次方程(1 课时),一元二次方程的根与系数的关系3课时),应用一元二次方程(2 课时),回顾与思考(1课时(共11课时。1、认识一元二次方程只含有一个未知数5勺整式方程,并口都可以化成加+配+八0 ("Ac为常 数芋0)的形式,这样的方程叫做一元二次方程。把R由“e = Q (3 为 常数,"H0)称为一兀二次方程的一般形式,其中仃)历,C分别称为二 次项、一次项和常数项,方分别称为二次项系数和一次项系数02、用配方法求解一元二次方程通过配成完全平方式的方法得到一兀二次方程的根,这种解一兀二次方程 的方法称为配方法。遇到二次项系数不为1的情况,可以先将二次项系
5、数化为1.3、川公式法求解一兀二次方程一元二次方程的求根公式:X 二-4<a用求根公式解一元二次方程的方法称为公式法Q对于一元二次方程,当/-4第0时,方程有两个不相等的实数根;当万一4阳二。时,方程有两个相等的实数根:当方4改。时,方程没有实 数根。把6? _ 4田叫做一元二次方程的根的判别式,用表示。4、用因式分解法求解一元二次方程如果成| = 0,那么。=0或3 = 0。当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时, 可以使用因式分解法来求解方程。将原来的一元二次方程转化成了两个一 元一次方程。5、一元二次方程的根与系数的关系如果方程加+/+C=O("
6、O)有两个实数根不三,那么的=-2 , xrr2 = - o a"6、应用一元二次方程 相遇问题,定价问题 第三章 概率的进一步认识(5课时)目标:能运用列表和画树状图的方法计算一些简单事件发生的概率;能用 时延频率估计一些较复杂随机事件发生的概率;能运用概率解决一些简单 的实际问题。用树状图或表格求概率(3 i果时),用频率估i|僦率(1课时),回顾与思 考(1课时,共5课时。1、用树状图或表格求概率树状图或表格5以不重复、不遗漏地列举可能出现的结果。2、用频率估计概率第四章图形的相似(17课时目标;了解线段的比、成比例线段,掌握比例的性质及平行线分线段成比 例的基本事实;了解相似
7、多边形和相似比:三角形相似的条件和性质;相 似三角形判定定理的证明:了解图形的位似,能够利用位似将一个图形放 大或缩小;了解多边形的顶点坐标,分别扩大或能小相同倍数时所对应的 图形与原图形的位似美系;了解黄金分割。成比例线段(2课时),平行线分线段成比例(1课时),相似多边形(1 课忖),三角形相似的条件"课时),相似三角形判定定理的证明(3课 时),利用相似三角形测高(1课时),相似三角形的性质(2课时,图形 的位似(2课时),回顾与思考(1课时);共17课时。1、成比例线段AHCf)如果选用统一长度单位量得两条线段而工7)的长度分别是川、,八那么这两 条线段的比就是它们长度的比,
8、即M=皿,或写成黑小。其中,线 段川LC)分别叫做这个线段比的前项和后项.如果把巴表示成比值人那么 或一二m 这两条线段的比实际上就是两个数的比。四条线段中。也"/中,如果“、的比等于e与的比,即»那么这四 h a条线段。力叫做成比例线段,简称比例线段。如果小那么"d二相。 b 如果ad二he ( abq d * 0 3那么:=三 b u所得的对应线段成比例b2、平行线分线段成比例 两条直线被组平行线所截,推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。3、相似多边形各角分别相等、各边成比例的两个多边形叫做相似多边形。相似多边形对 应边的比叫做相
9、似比.4、探索相似三角形相似的条件三角分别相等、三边成比例的两个三角形叫做相似三角形°定理;两角分 别相等的两个三角形相似。定理:两边成比例旦夹角相等的两个三角形相 似。定理:三边成比例的三角形相似。一般地,点把线段加分成两条线段”和",如果噂=坦,那么称线段" 被点C黄金分割,点叫做线段”的黄金分割点,罪与W的比叫做黄金比, 0.618.5、相似三角形判定定理的证明上面定理的证明,思路是:在大的三角形中作一个跟小的三角形全等的三 角形,证明所作的三角形与大的三角形相似,所以,小的三角形也与大的 三角形相似。6、利用相似三角形测高7、相似三角形的性质定理:相似三角
10、形对应高的比、对应角平分线的比、对应中线的比都等于 相似比。定理:相似三角形的周长比等于相似比,面积比等于相似比的平,方。8、图形的位似一般地,如果两个相似多边形任意一组对应顶点尸所在的直线都经过同 一点。,且有“'=八3(h0),那么这样的两个多边形叫做位似多边形, 点少叫做位似中心,实际 匕就是这两个相似多边形的相似比.在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一 个数*工0),所对应的图形与原图形位似,位似中心是坐标原点,他们的 相似比为阳。第五章投影与视图(6课时) 目标:会画圆柱、圆锥、球、直梭柱及简单组合体的三种视图:了解视图 在生活中的应用。投影(2课
11、时),视图(3课时),回顾与思考(1课时)1、投影物体在光线照射下,会在地面或其它平面上留下他的影子,这就是投影现 象,影子所在的平面称为投影面*太阳光线可以看成是平行光线,平行光线所成的投影称为平行投影.太行 光线与投影面垂直的投影称为正投影。2、视图用正投影的方法绘制的物体在投影面上的图形,称为物体的视图a从正面 得到的视图叫做生视图,从左面得到的视图叫做左视图,从上面得到的视 图叫做俯视图。在这三种视图中,主视图反映物体的长和高,俯视图反映物体的长和宽, 左视图反映物体的高和宽。第六章反比例函数(5课时) 目标:体会反比例函数的意义,理解反比例函数的概念,求解反比例函数 的表达式;画出反比例函数的图像,理解反比例函数的性质。反比例函数(课时),图像与性质(2课时),应用3课时),回顾与思 考(1课时),共5课时。1、反比例函数如果变量”之间的对应关系可以表示成户t a为常数,且门。)的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳务机器租用协议书
- 2025年版中级会计实务试题及答案
- 加盟企业合同协议书
- 2025咨询服务合同,专业咨询合同范本,国际咨询服务合同范本
- 品牌加盟意向协议书
- 取暖设备转让协议书
- 2025财务管理重要考试内容试题及答案
- 员工共生关系协议书
- 员工餐补合同协议书
- 公司消防转让协议书
- 吡格列酮联合二甲双胍治疗2型糖尿病的循证证据
- 全国青少年电子信息智能与创新大赛(智能运输器)考试题库
- unit5 Will you be a worker or a laborer名师优质课赛课一等奖市公开课获奖课件
- 布草间管理制度(3篇)
- 物流管理专业 苏果超市南京地区配送路径优化研究
- GB∕T 12719-2021 矿区水文地质工程地质勘查规范
- 法商小课堂传承保险法商课婚姻保险法商课32张幻灯片
- 《刘姥姥进大观园》课本剧剧本3篇
- 房屋买卖合同解除协议书
- 干部选拔任用工作全部系列表格12张
- 五年级奥数《盈亏问题》(课堂PPT)
评论
0/150
提交评论