导数、定积分_第1页
导数、定积分_第2页
导数、定积分_第3页
导数、定积分_第4页
导数、定积分_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、导数、定积分【知识要点】1导数的概念:函数y的导数,就是当0时,函数的增量y与自变量的增量的比的 ,即 2导函数:函数y在区间(a, b)内 的导数都存在,就说在区间( a, b )内 ,其导数也是(a ,b )内的函数,叫做的 ,记作或,函数的导函数在时的函数值 ,就是在处的导数.3导数的几何意义:设函数y在点处可导,那么它在该点的导数等于函数所表示曲线在相应点处的 .4求导数的方法(1) 八个基本求导公式 ; ;(nQ) , , , (2) 导数的四则运算 , (3) 复合函数的导数设在点x处可导,在点处可导,则复合函数在点x处可导, 且 ,即.5 函数的单调性 函数y在某个区间内可导,若

2、0,则为 ;若0,则为 .(逆命题不成立)(2) 如果在某个区间内恒有,则 .注:连续函数在开区间和与之相应的闭区间上的单调性是一致的.(3) 求可导函数单调区间的一般步骤和方法: 确定函数的 ; 求,令 ,解此方程,求出它在定义区间内的一切实根; 把函数的间断点(即的无定义点)的横坐标和上面的各个实根按由小到大的顺序排列起来,然后用这些点把函数的定义区间分成若干个小区间; 确定在各小开区间内的 ,根据的符号判定函数在各个相应小开区间内的增减性.6可导函数的极值 极值的概念设函数在点附近有定义,且对附近的所有点都有 (或 ),则称为函数的一个极大(小)值称为极大(小)值点. 求可导函数极值的步

3、骤: 求导数; 求方程0的 ; 检验在方程0的根左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数y在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函数y在这个根处取得 .7函数的最大值与最小值: 设y是定义在区间a ,b 上的函数,y在(a ,b )内有导数,则函数y在a ,b 上 有最大值与最小值;但在开区间内 有最大值与最小值(2) 求最值可分两步进行: 求y在(a ,b )内的 值; 将y的各 值与、比较,其中最大的一个为最大值,最小的一个为最小值.(3) 若函数y在a ,b 上单调递增,则为函数的 ,为函数的 ;若函数y在a ,b 上单调递减,则为函数的 ,为函数的

4、.8定积分(1)概念设函数f(x)在区间a,b上连续,用分点ax0<x1<<xi1<xi<xnb把区间a,b等分成n个小区间,在每个小区间xi1,xi上取任一点i(i1,2,n)作和式In(i)x(其中x为小区间长度),把n即x0时,和式In的极限叫做函数f(x)在区间a,b上的定积分,记作:,即(i)x。这里,a与b分别叫做积分下限与积分上限,区间a,b叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式基本的积分公式:C;C(mQ, m1);dxlnC;C;C;sinxC;cosxC(表中C均为常数)(2)定积分的性质(k为常数);(

5、其中acb。(3)定积分求曲边梯形面积由三条直线xa,xb(a<b),x轴及一条曲线yf(x)(f(x)0)围成的曲边梯的面积。如果图形由曲线y1f1(x),y2f2(x)(不妨设f1(x)f2(x)0),及直线xa,xb(a<b)围成,那么所求图形的面积SS曲边梯形AMNBS曲边梯形DMNC。【典型例题】考点1:导数的概念与运算例1如一物体的运动方程是,其中的单位是米,的单位是秒,那么物体在时的瞬时速度为_(答:5米/秒)例2求函数y=在x0到x0+x之间的平均变化率.解 y= 例3(1)已知函数的导数为,则_(答:);(2)函数的导数为_(答:);(3)若对任意,则是_(答:)

6、(4)求的导数;(5)求的导数;(6)求y的导数解析:(4)先化简,(5)先使用三角公式进行化简.(6)yxy*(x)x)*()。点评:(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;(2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导有时可以避免使用商的求导法则,减少运算量考点2:导数的几何意义例1(1)P在曲线上移动,在点P处的切线的倾斜角为,则的取值范围是_(答:);(2)直线是曲线的一条切线,则实数的值为_(答:3或1);(3)已知函数(为常数)图象上处的切线与的夹角为,

7、则点的横坐标为_(答:0或);(4)曲线在点处的切线方程是_(答:);例2已知函数,又导函数的图象与轴交于。求的值;求过点的曲线的切线方程(答:1;或( 例3已知曲线y=(1)求曲线在x=2处的切线方程;(2)求曲线过点(2,4)的切线方程. 解 (1)y=x2,在点P(2,4)处的切线的斜率k=|x=2=4. 曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0. (2)设曲线y=与过点P(2,4)的切线相切于点,则切线的斜率k=|=. 切线方程为即 点P(2,4)在切线上,4=即(x0+1)(x0-2)2=0,解得x0=-1或x0=2,故所求的切线方程为4x-y-4=

8、0或x-y+2=0. 考点3:应用导数研究函数的单调性例1(2011北京文)已知函数,(I)求的单调区间;(II)求在区间上的最小值。解:(I),令;所以在上递减,在上递增;(II)当时,函数在区间上递增,所以;当即时,由(I)知,函数在区间上递减,上递增,所以;当时,函数在区间上递减,所以。例2(2010年高考江西卷理)设函数(1)当时,求的单调区间;(2)若在上的最大值为,求的值解: 函数的定义域为, ,(1)当时,所以的单调递增区间为,单调递减区间为,(2)当时,所以在上单调递增,故在上的最大值为,因此 例3.(2011北京理)已知函数.(1)求的单调区间;(2)若对,都有,求的取值范围

9、。解:(1),令得当时,在和上递增,在上递减;当时,在和上递减,在上递增(2) 当时,;所以不可能对,都有;当时有(1)知在上的最大值为,所以对,都有即,故对,都有时,的取值范围为。 例4(2009安徽卷文)已知函数 ()讨论的单调性; ()设a=3,求在区间1,上值域。期中e=2.71828是自然对数的底数.【思路】由求导可判断得单调性,同时要注意对参数的讨论,即不能漏掉,也不能重复。第二问就根据第一问中所涉及到的单调性来求函数在上的值域。解析 (1)由于令 当,即时, 恒成立.在(,0)及(0,)上都是增函数.当,即时 由得或 或或又由得综上当时, 在上都是增函数.当时, 在上是减函数,

10、在上都是增函数.(2)当时,由(1)知在上是减函数.在上是增函数.又 · 函数在上的值域为考点4:应用导数求函数的极值与最值例1(2011安徽理)设,其中为正实数()当时,求的极值点;()若为上的单调函数,求的取值范围。本题考查导数的运算,极值点的判断,导数符号与函数单调变化之间的关系,求解二次不等式,考查运算能力,综合运用知识分析和解决问题的能力.解:对求导得 (I)当,若综合,可知+00+极大值极小值所以,是极小值点,是极大值点.(II)若为R上的单调函数,则在R上不变号,结合与条件a>0,知在R上恒成立,因此由此并结合,知例2(2011重庆理)设的导数满足,其中常数. (

11、)求曲线在点处的切线方程; () 设,求函数的极值。解:()则;所以,于是有故曲线在点处的切线方程为:()由()知,令;于是函数在上递减,上递增,上递减;所以函数在处取得极小值,在处取得极大值。例3(2012年安徽理)设(I)求在上的最小值;(II)设曲线在点的切线方程为;求的值.【解析】(I)设;则 当时,在上是增函数 得:当时,的最小值为 当时, 当且仅当时,的最小值为 (II) 由题意得: 例4(2011江西理)设.(1)若在上存在单调递增区间,求的取值范围;(2)当时,在上的最小值为,求在该区间上的最大值.【解析】(1)在上存在单调递增区间,即存在某个子区间 使得.由,在区间上单调递减

12、,则只需即可。由解得,所以,当时,在上存在单调递增区间.(2)令,得两根,.所以在,上单调递减,在上单调递增当时,有,所以在上的最大值为又,即所以在上的最小值为,得,从而在上的最大值为.考点5:定积分例1计算下列定积分的值(1);(2);(3);(4);解析:(1)(2)因为,所以;(3)(4)例2函数的图象与x轴所围成的封闭图形的面积为A. B. 1 C. 2 D. 根据定积分的几何意义结合图形可得所求的封闭图形的面积:,故选A.例3求由抛物线与过焦点的弦所围成的图形面积的最小值.图解:焦点坐标为,设弦AB、CD过焦点F,且由图得知:,故所求面积为:例4设y=f(x)是二次函数,方程f(x)

13、=0有两个相等的实根,且 =2x+2.(1)求y=f(x)的表达式;(2)求y=f(x)的图象与两坐标轴所围成图形的面积.(2)若直线x=t(0t1把y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.解:(1)设f(x)=ax2+bx+c,则f(x)=2ax+b,又已知f(x)=2x+2a=1,b=2.f(x)=x2+2x+c又方程f(x)=0有两个相等实根,判别式=44c=0,即c=1.故f(x)=x2+2x+1.(2)依题意,有所求面积=.(3)依题意,有,t3+t2t+=t3t2+t,2t36t2+6t1=0,2(t1)3=1,于是t=1.评述:本题考查导数和积分的基本概念.

14、【实战训练】1(2010年高考北京)已知函数()=In(1+)-+(0)。()当=2时,求曲线=()在点(1,(1)处的切线方程;()求()的单调区间。解:(I)当时, 由于, 所以曲线在点处的切线方程为 即 (II),. 当时,. 所以,在区间上,;在区间上,. 故得单调递增区间是,单调递减区间是. 当时,由,得, 所以,在区间和上,;在区间上, 故得单调递增区间是和,单调递减区间是. 当时, 故得单调递增区间是.当时,得,.所以没在区间和上,;在区间上,故得单调递增区间是和,单调递减区间是2(2012年高考(重庆理)(本小题满分13分,()小问6分,()小问7分.)设其中,曲线在点处的切线

15、垂直于轴.() 求的值;() 求函数的极值.2. 【考点定位】本小题主要考查利用导数研究曲线上某点切线方程、函数的最值及其几何意义,两条直线平行的判定等基础知识,考查运算求解能力. 解:(1)因,故 由于曲线在点处的切线垂直于轴,故该切线斜率为0,即, 从而,解得 (2)由(1)知, 令,解得(因不在定义域内,舍去), 当时,故在上为减函数; 当时,故在上为增函数; 故在处取得极小值. 3(2012年高考北京理)已知函数(),.(1)若曲线与曲线在它们的交点(1,)处具有公共切线,求的值;(2)当时,求函数的单调区间,并求其在区间上的最大值.3. 【考点定位】此题应该说是导数题目中较为常规的类

16、型题目,考查的切线、单调性、极值以及最值的问题都是课本中要求的重点内容,也是学生掌握比较好的知识点. 解:(1)由为公共切点可得:,则, ,则, 又,即,代入式可得:. (2),设 则,令,解得:,; , 原函数在单调递增,在单调递减,在上单调递增 若,即时,最大值为; 若,即时,最大值为 若时,即时,最大值为. 综上所述:当时,最大值为;当时,最大值为. 4.(2011江西)设. (1)如果在处取得最小值,求的解析式; (2)如果,的单调递减区间的长度是正整数,试求和 的值(注:区间的长度为).解:(1)已知,又在处取极值,则,又在处取最小值-5.则,(2)要使单调递减,则又递减区间长度是正

17、整数,所以两根设做a,b。即有:b-a为区间长度。又又b-a为正整数,且m+n<10,所以m=2,n=3或,符合。5.(2010年高考安徽卷)设为实数,函数。 ()求的单调区间与极值;()求证:当且时,。6.(2010年全国高考宁夏)设函数。(1) 若,求的单调区间;(2) 若当时,求的取值范围6解:(1)时,.当时,;当时,.故在单调减少,在单调增加(II)由(I)知,当且仅当时等号成立.故,从而当,即时,而,于是当时,.由可得.从而当时,故当时,而,于是当时,.综合得的取值范围为.7.(2011浙江)设函数,()求的单调区间;()求所有实数,使对恒成立注:为自然对数的底数7.本题主要

18、考查函数的单调性、导数运算法则、导数应用等基础知识,同时考查抽象概括、推理论证能力。满分15分。 ()解:因为,所以由于,所以的增区间为,减区间为 ()证明:由题意得,由()知内单调递增,要使恒成立,只要,解得8.(2009宁夏海南)已知函数.(1) 设,求函数的极值;(2) 若,且当时,12a恒成立,试确定的取值范围.请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分。作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。 解:()当a=1时,对函数求导数,得w.w.w.k.s.5.u.c.o.m 令 列表讨论的变化情况:(-1,3)3+00+极大值6极小

19、值-26所以,的极大值是,极小值是()的图像是一条开口向上的抛物线,关于x=a对称.若上是增函数,从而 上的最小值是最大值是由于是有 由所以 若a>1,则不恒成立.所以使恒成立的a的取值范围是 9(2012年高考天津)已知函数的最小值为,其中.()求的值;()若对任意的,有成立,求实数的最小值;()证明.9. 【命题意图】本试题主要考查导数的运算、利用导数研究函数的单调性、不等式等基础知识,考查函数思想、分类讨论思想、考查综合分析和解决问题的能力. (1)的定义域为得:时,(2)设则在上恒成立(*)当时,与(*)矛盾当时,符合(*)得:实数的最小值为(lfxlby)(3)由(2)得:对任

20、意的值恒成立取:当时, 得:(lb ylfx)当时,得:【点评】试题分为三问,题面比较简单,给出的函数比较常规,因此入手对于同学们来说没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进行. 10(2012年高考山东)已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.()求的值;()求的单调区间;()设,其中为的导函数.证明:对任意.10解析:由f(x) = 可得,而,即,解得; (),令可得, 当时,;当时,. 于是在区间内为增函数;在内为减函数. (), (1)当时, ,. (2)当时,要证. 只需证即可 设函数. 则, 则当时, 令解得, 当时;当时, 则当时,且, 则,于是可知当时成立 综合(1)(2)可知对任意x>0,恒成立. 另证1:设函数,则, 则当时, 于是当时,要证, 只需证即可, 设, 令解得, 当时;当时, 则当时, 于是可知当时成立 综合(1)(2)可知对任意x>0,恒成立. 另证2:根据重要不等式当时,即, 于是不等式, 设, 令解得, 当时;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论