




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、when i was young, happiness was a thing, and when i got it, i felt happy.整合汇编简单易用(页眉可删)关于高中数学说课稿模板集锦十篇 高中数学说课稿 篇1【一】教学背景分析1。教材结构分析圆的方程安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。2。学情分析圆的方程是学生在初中学习
2、了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3。教学目标(1) 知识目标:掌握圆的标准方程;会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;利用圆的标准方程解决简单的实际问题。(2) 能力目标:进一步培养学生用代数方法研究几何问题的能力;加深对数形结合思想的理解和加强对待定系数法的运用;增强学生用数学的意
3、识。(3) 情感目标:培养学生主动探究知识、合作交流的意识;在体验数学美的过程中激发学生的学习兴趣。根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:4。 教学重点与难点(1)重点:圆的标准方程的求法及其应用。(2)难点: 会根据不同的已知条件求圆的标准方程;选择恰当的坐标系解决与圆有关的实际问题。为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:好学教育:【二】教法学法分析1。教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助
4、信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。2。学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。 下面我就对具体的教学过程和设计加以说明:【三】教学过程与设计整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高反馈训练 形成方法 小结反思 拓展引申下面我从纵横两方面叙述我的教学程序与设计意图。首先:纵向叙述教学过程(一)创设情境启迪思维问题一 已知隧道的截面是半径为4
5、m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,把学生的思维由用勾股定理求线段cd的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题_于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环
6、节。(二)深入探究获得新知问题二 1。根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2。如果圆心在,半径为时又如何呢?好学教育:这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。(三)应用举例巩固提高i。直接应用 内化新知问题三 1。写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点,圆心在点。2。写出圆的圆
7、心坐标和半径。我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。ii。灵活应用 提升能力问题四 1。求以点为圆心,并且和直线相切的圆的方程。2。求过点,圆心在直线上且与轴相切的圆的方程。3。已知圆的方程为,求过圆上一点的切线方程。你能归纳出具有一般性的结论吗?已知圆的方程是,经过圆上一点的切线的方程是什么?我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的
8、标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。iii。实际应用 回归自然问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。好学教育:我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相
9、呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。(四)反馈训练形成方法问题六 1。求过原点和点,且圆心在直线上的圆的标准方程。2。求圆过点的切线方程。3。求圆过点的切线方程。接下来是第四环节反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知
10、识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。(五)小结反思拓展引申1。课堂小结把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 圆心为,半径为r 的圆的标准方程为:圆心在原点时,半径为r 的圆的标准方程为:。已知圆的方程是,经过圆上一点的切线的方程是:。2。分层作业(a)巩固型作业:教材p8182:(习题7。6)1,2,4。(b)思维拓展型作业:试推导过圆上一点的切线方程。3。激发新疑问题七 1。把圆的标准方程展开后是什么形式?2。方程表示什么图形?在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题
11、,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计(一)突出重点 抓住关键 突破难点好学教育:求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,
12、缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。(二)学生主体 教师主导 探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求
13、学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。(三)培养思维 提升能力 激励创新为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。以上是我对这节课的教学预设,具体的教学
14、过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。高中数学说课稿 篇2一、教材分析(一)地位与作用幂函数选自高一数学新教材必修1第2章第3节。是基本初等函数之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,为今后学习三角函数等其他函数打下良好的基础在初中曾经研究过yx,yx2,yx1三种幂函数。这节内容,是对初中有关内容的进一步的概括、归纳与发展,是与幂有关知识的高度升华本节内容之后,
15、将把指数函数,对数函数,幂函数科学的组织起来,体现充满在整个数学中的组织化,系统化的精神。让学生了解系统研究一类函数的方法这节课要特别让学生去体会研究的方法,以便能将该方法迁移到对其他函数的研究(二)学情分析(1)学生已经接触的函数,确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识 ,已初步形成对数学问题的合作探究能力。(2)虽然前面学生已经学会用描点画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。(3)学生层次参差不齐,个体差异比较明显。二、目标分析新课标指出“三维目标”是一个密切联系的有机整体。(一)教学目标(1)知识与技能使学生理解幂函数的概
16、念,会画幂函数的图象。让学生结合这几个幂函数的图象,理解幂函图象的变化情况和性质。(2)过程与方法让学生通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。(3)情感态度与价值观通过熟悉的例子让学生消除对幂函数的陌生感从而引出概念,引起学生注意,激发学生的.学习兴趣。利用多媒体,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望。培养学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力。并引导学生发现数学中的对称美,让学生在画图与识图中获得学习的快乐。(二)重
17、点难点根据我对本节课的内容的理解,我将重难点定为:重点:从五个具体的幂函数中认识概念和性质难点:从幂函数的图象中概括其性质。三、教法、学法分析(一)教法教学过程是教师和学生共同参与的过程,教师要善于启发学生自主性学习,充分调动学生的积极性、主动性,要有效地渗透数学思想方法,努力去提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法。1、引导发现比较法因为有五个幂函数,所以可先通过学生动手画出函数的图象,观察它们的解析式和图象并从式的角度和形的角度发现异同,并进行比较,从而更深刻地领会幂函数概念以及五个幂函数的图象与性质。2、借助信息技术辅助教学由于多媒
18、体信息技术能具有形象生动易吸引学生注意的特点,故此,可用多媒体制作引入情境,将学生引到这节课的学习中来。再利用几何画板画出五个幂函数的图象,为学生创设丰富的数形结合环境,帮助学生更深刻地理解幂函数概念以及在幂函数中指数的变化对函数图象形状和单调性的影响,并由此归纳幂函数的性质。3、练习巩固讨论学习法这样更能突出重点,解决难点,使学生既能够进行深入地独立思考又能与同学进行广泛的交流与合作,这样一来学生对这五个幂函数领会得会更加深刻,在这个过程中学生们分析问题和解决问题的能力得到进一步的提高,班级整体学习氛氛围也变得更加浓厚。(二)学法本节课主要是通过对幂函数模型的特征进行归纳,动手探索幂函数的图
19、像,观察发现其有关性质,再改变观察角度发现奇偶函数的特征。重在动手操作、观察发现和归纳的过程。由于幂函数在第一象限的特征是学生不容易发现的问题,因此在教学过程中引导学生将抽象问题具体化,借助多媒体进行动态演化,以形成较完整的知识结构。四、教学过程分析(一)教学过程设计(1)创设情境,提出问题。 新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。问题1:下列问题中的函数各有什么共同特征?是否为指数函数?由学生讨论,总结,即可得出:pw,sa2,v=a,as1/
20、2,vt1这时学生观察可能有些困难,老师提示可以用x表示自变量,用y表示函数值,上述函数式变成:都是自变量的若干次幂的形式。都是形如的函数。揭示课题:今天这节课,我们就来研究:幂函数(一)课堂主要内容(1)幂函数的概念幂函数的定义。一般地,函数叫做幂函数,其中x 是自变量,a是常数。幂函数与指数函数之间的区别。幂函数底数是自变量,指数是常数;指数函数指数是自变量,底数是常数。(2)几个常见幂函数的图象和性质由同学们画出下列常见的幂函数的图象,并根据图象将发现的性质填入表格根据上表的内容并结合图象,总结函数的共同性质。让学生交流,老师结合学生的回答组织学生总结出性质。以上问题的设计意图:数形结合
21、是一个重要的数学思想方法,它包含以数助形,和以形助数的思想。通过问题设计让学生着手实际,借助行的生动来阐明幂函数的性质。教师讲评:幂函数的性质所有的幂函数在(0,)上都有定义,并且图像都过点(1,1)如果a0,则幂函数的图像通过原点,并在区间0,)上是增函数如果a0,则幂函数在(0,)上是减函数,在第一象限内,当x从右边趋向于原点时,图像在y轴右方无限地趋近y轴;当趋向于时,图像在x轴上方无限地趋近轴当a为奇数时,幂函数为奇函数;当a为偶数时,幂函数为偶函数。以问题设计为主,通过问题,让学生由已经学过的指数函数,对数函数,描点作图得到五个幂函数的图像,但是我们应该知道绘制幂函数的图像比绘制指数
22、函数和对数函数的图像更为复杂,因为幂函数随着幂指数的轻微变化会出现较大的变化,因此,在描点作图之前,应引导学生对几个特殊的幂函数的性质先进行初步的探究,如分析函数的定义域,奇偶性等,在根据研究结果和描点作图画出图像,让学生观察所作图像特征,并由图象特征得到相应的函数性质,让学生充分体会系统的研究方法。同时学生对于归纳性质这一环节相对指数函数,对数函数的性质,学生会有更大的困难。因此,教学中只须对他们的图像与基本性质进行认识,而不必在一般幂函数上作过多的引申和介绍。在教学中,采用从具体到一般,再从一般到具体的安排。通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的
23、再次深化。(3)当堂训练,巩固深化例题和练习题的选取应结合学生认知探究,巩固本节课的重点知识,并能用知识加以运用。本节课选取主要选取了两道例题。例1是课本上的例题:证明f(x)=x1/2在(0,)上是增函数。这题先从“形”的角度判断函数的单调区间和单调性,再用到定义从“数”的角度对函数的单调性进行推理论证,培养学生的数形结合的数学思想和解决问题的专业素养。例2是补充例题,主要培养学生根据体例构造出函数,并利用函数的性质来解决问题的能力,从而加深学生对幂函数及其性质的理解。注意:由于学生对幂函数还不是很熟悉,所以在讲评中要刻意体现出幂函数yx1。3是增函数与yx5/4的图像的画法,即再一次让学生
24、体会根据解析式来画图像解题这一基本思路(4)小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?(二)作业设计 作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成 我设计了以下作业:
25、(1)必做题(2)选做题(三)板书设计板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。五、评价分析学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对幂函数是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理
26、解和设计,敬请各位专家、评委批评指正。谢谢!高中数学说课稿 篇3一、教材分析1、教材内容本节课是苏教版第二章函数概念和基本初等函数§213函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题2、教材所处地位、作用函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题通过上述活动,加深对函数本质的认识函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础此外在比较数的大小、函数的定性分
27、析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法3、教学目标(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性的方法;(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质4、重点与难点教学重点(1)
28、函数单调性的概念;(2)运用函数单调性的定义判断一些函数的单调性教学难点(1)函数单调性的知识形成;(2)利用函数图象、单调性的定义判断和证明函数的单调性二、教法分析与学法指导本节课是一节较为抽象的数学概念课,因此,教法上要注意:1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决3、在鼓励学生主体参与的同时,不可忽视教师的主导作用具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成
29、功地完成书面表达4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性在学法上:1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃三、 教学过程教学高中数学说课稿 篇4一、教材分析:向量的加法是必修4第二章第二单元中“平面向量的线性运算”的第一节课。本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及
30、其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在“平面向量”及“空间向量”中有很重要的地位。二、学情分析:学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。三、教学目的:1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加
31、法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。四、教学重、难点重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,平行四边形法则在本课中所占份量略少于三角形法则。难点:对三角形法则的理解;方向相反的两个向量的加法
32、。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。五、教学方法本节采用以下教学方法:1、类比:由数的加法运算类比向量的加法运算。2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;通过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。六、数学思想的体
33、现:1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从对比中看出两者的不同,效果较好。3、归纳思想:主要体现在以下三个环节学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都可以选用。由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用
34、于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。七、教学过程:1、回顾旧知:本节要进行向量的平移,且对向量加法分共线与不共线两种情况,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。2、引入新课:(1)平行四边形法则的引入。学生在物理学中虽然接触过位移的合成,但是并没有形成三角形法则的概念;而对平行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的平行四边形法则。平行四边形法则的特点是起点相同,但是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的平行四边形法则,所给出的
35、图形也是现成的平行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一起才能用平行四边形法则,不在一起不能用。这时要通过讲解例1,使学生认识到可以通过平移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题向量的加法,这样新中有旧,学生容易接受,也使学科间的渗透发挥了作用,加深了学生对向量加法的平行四边形法则的“起点相同”这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一起时,须把起点移到一
36、起,至此才能使学生完成对平行四边形法则理解真正到位。(2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的平行四边形法则的图形中直接引入(如图)。所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还可以利用三角形法则来做。这时,总结出两个不共线向量求和时,平行四边形法则与三角形法则都可以用。设计意图:由平行四边形法则的图形引入三角形法则,可以很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,而且衔接自然,能够使学生对比地得出两个法则的特点与实质,并
37、对两个法则的特点有较深刻的印象。(3)共线向量的加法方向相同的两个向量相加,对学生来说较易完成,“将它们接在一起,取它们的方向及长度之和,作为和向量的方向与长度。”引导学生分析作法,结果发现还是运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。方向相反的两个向量相加,对学生来说是个难点,首先从作图上不知道怎样做。但是学生学过有理数加法中的异号两数相加:“异号两数相加,用较大的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。”类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由老师引导学生尝试运用三角形法则去做,发现结论正确。反思过程,学
38、生自然会想到方向相同的两个向量相加,类似于同号两数相加。这说明两个共线向量相加依然可用三角形法则 通过以上几个环节的讨论,可以作个简单的小结:两个不共线向量相加,可采用平行四边形法则或三角形法则,而两个共线向量相加在本课所学方法中只能用三角形法则,说明三角形法则适用于任意两个向量相加。设计意图:通过对共线向量加法的探讨,拓宽了学生对三角形法则的认识,使得不同位置的向量相加都有了依据,并且采用类比的方法,使学生对共线向量的加法,尤其是方向相反的两个向量的加法更易于理解,可以化解难点。(4)向量加法的运算律交换律:交换律是利用平行四边形法则的图形,又结合三角形法则得出,理解起来没什么困难,再一次强
39、化了学生对两个法则特点及实质的认识。结合律:结合律是通过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。接下来是对应的两个练习,运用交换律与结合律计算向量的和。设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样可以运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最后一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。3、小结先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结内容,使学生印象更深。(1)
40、平行四边形法则:起点相同,适用于不共线向量的求和。(2)三角形法则首尾相接,适用于任意多个向量的求和。(3)运算律高中数学说课稿 篇5各位评委:下午好!我叫 ,来自 。今天我说课的课题 (第 课时)。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。一、教材分析(一)教材的地位和作用 是人教版出版社 第 册、第 单元的内容。既是 在知识上的延伸和发展,又是_ 的运用与巩固,也为下一章 教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了 的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。(二)、学情分析通过前一阶段的教学,学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全国辅警招聘面试题库及答案精 编
- 2025年洛宁县辅警考试练习题库(含答案)
- 2025年辽宁省地矿集团招聘考试笔试试题(含答案)
- 平安基础知识培训课件
- 茶艺学考试题库及答案
- 广西理化考试题库及答案
- 常见安全知识培训课件
- 常用工具分类课件
- 带班工作基础知识培训课件
- 安徽省阜阳市成效中学2024-2025学年八年级下学期第一次月考道德与法治试卷(含答案)
- 2025年静宁县城区学校选调教师考试笔试试卷【附答案】
- 2025年乒乓球二级裁判考试题及答案
- 2025年乐清辅警考试题库及答案
- 血标本采集考试试题附有答案
- 浙江省温州市龙湾区2024-2025学年七年级下学期学业水平期末检测数学试题
- 北京卷2025年高考语文真题
- 2025年江苏省苏豪控股集团有限公司校园招聘笔试备考试题及答案详解(必刷)
- (完整)中小学“学宪法、讲宪法”知识竞赛题库及答案
- 2025年行政执法人员执法证考试必考多选题库及答案(共300题)
- 2024年自投光伏安装合同范本
- 乳制品配送服务应急处理方案
评论
0/150
提交评论