




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次根式全章复习【要点梳理】知识点一、二次根式的相关概念和性质1. 二次根式 形如的式子叫做二次根式,如等式子,都叫做二次根式.要点诠释:二次根式有意义的条件是,即只有被开方数时,式子才是二次根式,才有意义.2.二次根式的性质(1);(2); (3).要点诠释:(1) 一个非负数可以写成它的算术平方根的平方的形式,即(),如().(2) 中的取值范围可以是任意实数,即不论取何值,一定有意义.(3)化简时,先将它化成,再根据绝对值的意义来进行化简.(4)与的异同;不同点:中可以取任何实数,而中的必须取非负数;=,=().;相同点:被开方数都是非负数,当取非负数时,=.3. 最简二次根式1)被开方
2、数是整数或整式; 2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.如等都是最简二次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2.4.同类二次根式 几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.如与,由于=,与显然是同类二次根式.知识点二、二次根式的运算1. 乘除法(1)乘除法法则:类型法则逆用法则二次根式的乘法积的算术平方根化简公式:二次根式的除法商的算术平方根化简公式:要
3、点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如.(2)被开方数a、b一定是非负数(在分母上时只能为正数).如.2.加减法 将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如.【典型例题】类型一、二次根式的概念与性质1 x是怎样的实数时,下列各式在实数范围内有意义? (1); (2);举一反三:【变式】已知,求的值.2.把根号外的因式移到根号内,得( ).A B C D 举一反三:【变式】.3. 实数在
4、数轴上对应的点如图: 化简.举一反三:【变式】ABC的三边长为a、b、c,则= . 类型二、二次根式的运算4计算: (1);(2).举一反三:【变式】计算5.已知a、b、c为ABC的三边长,化简 6 若,化简.举一反三:【变式】当.平行四边形全章复习【要点梳理】要点一、平行四边形1定义:两组对边分别平行的四边形叫做平行四边形.2性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形.3面积:4判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相
5、等的四边形是平行四边形; (5)两组邻角分别互补的四边形是平行四边形(6)一组对边平行,一组对角相等的四边形是平行四边形;(7)对角线互相平分的四边形是平行四边形.要点诠释:平行线的性质:(1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等.要点二、矩形1定义:有一个角是直角的平行四边形叫做矩形.2性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3面积:判定:(1) 有一个角是直角的平行四边形是矩形.(2)对角线相等的平行四边形是矩形.(3)有三个角是直角的四边形是矩形.要点诠释:由矩形得直角三角形的性质:(1)
6、直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半要点三、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形.2性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3面积:4判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边相等的四边形是菱形.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形.2性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等
7、,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3面积:边长×边长×对角线×对角线4判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形1、如图,点D是ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合)以BD、BF为邻边作平行四边形BDEF,又APBE(点P、E在直线A
8、B的同侧),如果BDAB,那么PBC的面积与ABC面积之比为() A B C D举一反三:【变式】已知ABC中,AB3,AC4,BC5,分别以AB、AC、BC为一边在BC边同侧作正ABD、正ACE和正BCF,求以A、E、F、D四点为顶点围成的四边形的面积类型二、矩形2、如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AEBFCGDH(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DGAC,OF2,求矩形ABCD的面积举一反三:【变式】如图,O为ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连
9、接形成四边形DEFG(1)四边形DEFG是什么四边形,请说明理由;(2)若四边形DEFG是矩形,点0所在位置应满足什么条件?说明理由3、在RtABC中,ACB=90°,BC=4过点A作AEAB且AB=AE,过点E分别作EFAC,EDBC,分别交AC和BC的延长线与点F,D若FC=5,求四边形ABDE的周长类型三、菱形4、如图,平行四边形ABCD中,ABAC,AB1,BC对角线AC,BD 相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋
10、转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数举一反三:【变式】已知:如图所示,BD是ABC的角平分线,EF是BD的垂直平分线,且交AB于E,交BC于点F.求证:四边形BFDE是菱形.5、在口ABCD中,对角线AC、BD相交于点O,BD=2AB,点E、F分别是OA、BC的中点连接BE、EF(1)求证:EF=BF;(2)在上述条件下,若AC=BD,G是BD上一点,且BG:GD=3:1,连接EG、FG,试判断四边形EBFG的形状,并证明你的结论类型四、正方形6、正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且EDF45&
11、#176;将DAE绕点D逆时针旋转90°,得到DCM(1)求证:EFFM;(2)当AE1时,求EF的长举一反三:【变式】如图(1),正方形ABCD和正方形CEFG有一公共顶点C,且B、C、E在一直线上,连接BG、DE(1)请你猜测BG、DE的位置关系和数量关系?并说明理由(2)若正方形CEFG绕C点向顺时针方向旋转一个角度后,如图(2),BG和DE是否还存在上述关系?若存在,试说明理由;若不存在,也请你给出理由 勾股定理全章复习【要点梳理】要点一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:)2.勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角
12、三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)求作长度为的线段.要点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理 勾股定理的逆定理:如果三角形的三边长,满足,那么这个三角形是直角三角形.应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为;(2)验证与是否具有相等关系,若,则ABC是以C为直角的直角三角形,反之,则不是
13、直角三角形. 3.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.常见的勾股数:3、4、5; 5、12、13;8、15、17;7、24、25;9、40、41.如果()是勾股数,当t为正整数时,以为三角形的三边长,此三角形必为直角三角形.观察上面的、四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如中存在2425、4041等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与
14、其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.【典型例题】类型一、勾股定理及逆定理的应用1、如图所示,直角梯形ABCD中,ADBC,B90°,AD,AB,BC,E是AB上一点,且AE,求点E到CD的距离EF举一反三:【变式】如图所示,在ABC中,D是BC边上的点,已知AB13,AD12,AC15,BD5,求DC的长类型二、勾股定理与其他知识结合应用2、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC400米,BD200米,CD800米,牧童从A处把牛牵到河边饮水后再回家试问在何处饮水,所走路程最短?最短路程是多少?举一反三:【变式】如图所示,正方
15、形ABCD的AB边上有一点E,AE3,EB1,在AC上有一点P,使EPBP最短求EPBP的最小值3、如图所示,等腰直角ABC中,ACB90°,E、F为AB上两点(E左F右),且ECF45°,求证:.4、已知:如图,ABC中,CAB120°,AB4,AC2,ADBC,D是垂足,求AD的长类型三、本章中的数学思想方法1.转化的思想方法:我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决5、如图所示,ABC是等腰直角三角形,ABAC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DEDF,若BE12,CF5求线
16、段EF的长.举一反三:【变式】已知凸四边形ABCD中,ABC30°,ADC60°,ADDC,求证:2.方程的思想方法6、如图所示,已知ABC中,C90°,A60°,求、的值.一次函数全章复习【要点梳理】要点一、函数的相关概念 一般地,在一个变化过程中. 如果有两个变量 与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说 是自变量,是的函数. 是的函数,如果当时,那么叫做当自变量为时的函数值. 函数的表示方法有三种:解析式法,列表法,图象法.要点二、一次函数的相关概念一次函数的一般形式为,其中、是常数,0.特别地,当0时,一次函数即(0)
17、,是正比例函数.要点三、一次函数的图象及性质1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 要点诠释:直线可以看作由直线平移|个单位长度而得到(当0时,向上平移;当0时,向下平移).说明通过平移,函数与函数的图象之间可以相互转化.2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点诠释:理解、对一次函数的图象和性质的影响:(1)决定直线从左向右的趋势(及倾斜角的大小倾斜程度),决定它与轴交点的位置,、一起决定直线经过的象限 (2)两条直线:和:的位置关系可由其系数确定:与相交;,且与平行
18、;,且与重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线、直线不是一次函数的图象.要点四、用函数的观点看方程、方程组、不等式方程(组)、不等式问题函 数 问 题从“数”的角度看从“形”的角度看求关于、的一元一次方程0(0)的解为何值时,函数的值为0?确定直线与轴(即直线0)交点的横坐标 求关于、的二元一次方程组的解为何值时,函数与函数的值相等?确定直线与直线的交点的坐标求关于的一元一次不等式0(0)的解集为何值时,函数的值大于0?确定直线在轴(即直线0)上方部分的所有点的横坐标的范围【典型例题】类型一、函数的概念1、下列说法正确的是: ( ) .变量满足,则是的函
19、数;.变量满足,则是的函数; .变量满足,则是的函数; .变量满足,则是的函数.类型二、一次函数的解析式2、某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:印数(册)500080001000015000成本(元)28500360004100053500(1)经过对上表中数据的探究,发现这种读物的投入成本(元)是印数(册)的一次函数,求这个一次函数的解析式(不要求写出的取值范围);(2)如果出版社投入成本48000元,那么能印该读物多少册?举一反三:【变式】已知直线经过点,且与坐标轴所围成的三角形的面积为,求该直线的函数解析式类型三、一次函数的图象
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园防溺水安全知识培训课件
- 2025中国安能集团科工有限公司春季校园招聘笔试题库历年考点版附带答案详解版
- 2025年物流快递行业物流快递智能化发展研究报告
- 2025年电子元件行业电子元件制造与供应链管理研究报告
- 2025年数字音频产业行业数字音频内容创作现状研究报告
- 2025年电子游戏行业电竞赛事及游戏直播市场规模与趋势研究报告
- 2025年餐饮行业餐饮文化与餐饮创新研究报告
- 2025年纺织服装行业环保材料应用研究报告
- 2025年区块链行业区块链技术应用案例与区块链数字资产交易研究报告
- 2025年互联网金融行业风险管理与合规挑战研究报告
- 锂电池安全培训课件
- 妇科护士进修汇报护理课件
- 消防验收竣工报告
- 高考英语1600个必考高频词汇
- 法院调令申请书范本
- GB/T 23451-2023建筑用轻质隔墙条板
- 驻足思考瞬间整理思路并有力表达完整版
- 第二章 盛唐诗歌边塞诗派公开课一等奖课件省赛课获奖课件
- 滚筒干燥机设计毕业设计
- 真空包装机作业指导书
- 2023年上海16区高考一模英语听力合集附音频含答案含原文
评论
0/150
提交评论