轻绳、轻杆模型研究_第1页
轻绳、轻杆模型研究_第2页
轻绳、轻杆模型研究_第3页
轻绳、轻杆模型研究_第4页
轻绳、轻杆模型研究_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-作者xxxx-日期xxxx轻绳、轻杆模型研究【精品文档】轻绳、轻杆模型研究 制作人:肖华琴轻杆、轻绳都是忽略质量的理想模型,这两个模型既有相同又有相异,由于不同模型呈现的物理情景不同,因而具有不同的性质和规律。此类问题在高中物理中占有相当重要的地位,且涉及到的问题情景综合性较强、物理过程复杂,从受力的角度看,这类弹力可能是变力;从能量的角度看,可以通过弹力做功实现能量的转移、转化。通过分析这两种模型的特点,明确它们的相同之处和不同之处,以分析类似的问题。这两种模型的特点如下:(1) 轻绳模型:不能伸长,质量和重力可以视为零;同一根绳的两端和中间各点的张力相等;只能产生压力,与其他物体相互作用

2、时总是沿绳子方向;在瞬间问题中轻绳的拉力发生突变,不需要形变恢复时间;(2) 轻杆模型:不能伸长和压缩,质量和重力可以视为零;同一根轻杆的两端和中间各点的张力相等;能承受拉力、压力和侧向力,力的方向不一定沿杆的方向。一、力的方向有异1、轻绳产生的弹力只能沿绳并指向绳收缩的方向;2、轻杆产生的弹力不一定沿杆的方向,可以是任意方向。例1. 如图1所示,固定在小车上的支架的斜杆与竖直杆的夹角为,在斜杆下端固定有质量为m的小球,是分析小车在静止、水平向右以加速度a运动时杆对小球的作用力Fn的大小和方向。 解:(1)当小车静止时,小球也静止,小球处于平衡状态所受合外力为零。小球受竖直向下的重力,因此所受

3、杆对小球的支持力竖直向上,大小是Fn=mg; (2)当小车水平向左以加速度a运动时,小球同时也向左以加速度a运动,因此小球所受合外力F合=ma,F合为小球所受重力和杆对小球的支持力合成的结果。如图1(b),根据平行四边形定则,杆对小球的支持力,方向是斜向左上方,且与水平方向夹角为arctan(g/a);当a=g/tan时,Fn的方向是沿垂直于斜杆的左上方; (3)当小车水平向右以加速度a运动时,分析同上,不同之处是小球的支持力Fn方向是斜向右上方,且与水平方向夹角为arctan(g/a);当a=g*tan时,Fn的方向是沿斜杆的方向。 注:如果将杆改为轻质绳,其他条件不变,则当小车水平向右以加

4、速度a运动时,小球仅受重力和绳对小球的作用力;因为绳子只能被拉伸,因此绳子的弹力方向是沿绳方向。 总结:轻绳模型由于既能承受拉力和压力又能承受侧向力,因此力的方向不一定沿杆的方向;加速度和合外力具有对应关系,通过小球所受的合外力合重力分力来确定杆对小球支持力的大小和方向。轻质绳的弹力则只能沿绳的方向。二、力的效果有异1、轻绳只能提供拉力。2、轻杆既可以提供拉力,又可以提供压力。例2用长为的轻绳系一小球在竖直平面内做圆周运动,要使小球能做完整的圆周运动,则小球在最低点的速度最小为多少?若把轻绳改为轻杆,要使小球在竖直平面内能做完整的圆周运动,则小球在最低点的速度最小为多少?解:因小球在轻绳约束下

5、在竖直平面内能做完整的圆周运动,所以小球在最高点时有一个临界速度0,此时绳子的拉力恰好为零,由重力提供向心力有 设小球在最低点时的速度为,由机械能守恒定律得 由两式解得: 小球在最低点的速度必须大于等于。因小球在轻杆约束下在竖直平面内能做完整的圆周运动,所以小球在最高点时的速度稍微大于零即可,这时轻杆提供支持力。由机械能守恒定律,求出小球在最低点的速度为,小球在最低点的速度必须大于。总结:轻绳约束下的物体在竖直平面内做圆周运动,通过最高点时绳子的弹力可以为零,绳子呈现虚直状态;轻杆约束下的物体在竖直平面内做圆周运动,通过最高点时轻杆的弹力既可以提供拉力,又可以提供压力。三、力的突变性有异轻绳、

6、轻杆的弹力可以发生突变。例3、如图2(a)所示,质量为m的小球系于长度分别为L1、L2的两根轻绳上,L1的一端悬挂在天花板上,且与竖直方向夹角为,L2水平拉直,物体处于平衡状态,现将水平绳L2剪断,求此瞬间轻绳L1的拉力和小球的加速度。 (a) (b) 图2解:未剪断L2之前,小球受L1的拉力F1、L2的拉力F2和小球的重力G共同作用,三力的合力为零,小球处于平衡状态。 当水平绳L2剪断的瞬间,L2上的拉力和重力的合力不再是水平方向,而是沿垂直于L1向下的方向,如图2(b)所示。 故F1=mgcos 合力F合=mgsin=ma,a=gsin。方向沿垂直于L1向下。 注:如果把斜绳L1换成轻杆,

7、L1上的张力同样也发生突发,分析过程和结果与轻质绳模型相同。例4、如图3所示,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b。a球质量为m,静置于地面;b球质量为3m, 用手托住,高度为h,此时轻绳刚好拉紧。从静止开始释放b后,a可能达到的最大高度为图3Ah Bl.5h C2h D2.5h解:从静止开始释放b到落到地面时,由机械能守恒定律得,解得。a球上升h后,做竖直上抛运动,上升的高度为,故a上升的的最大高度为l.5h。故正确的选项为B总结:本题主要考查对物理情景的分析,轻绳连接的两小球,在轻绳绷紧的状态下遵守机械能守恒,抓住在b到落到地面时两球速度大小相等是解此题的关键

8、;在b到落到地面后,轻绳呈现松弛状态,a球做竖直上抛运动。四、模型连接效果有异同1、固定轻杆与铰链轻杆(1)固定轻杆即不可转动的轻杆。图4例9如图4所示,轻杆的一端固定在竖直的墙上,另一端装有一光滑的小滑轮,细绳绕过小滑轮一端系住一重物,另一端拴于墙壁上的点。现把拴于墙上点的绳端向上移动,则轻杆的作用力如何变化?解: 以绳与滑轮相接触点为研究对象,根据矢量的合成法则作出平行四边形,可知两段绳的拉力的合力变小,且与水平面间的夹角也变小。再由平衡条件可知:固定轻杆对悬绳的作用力变小,方向与水平面的夹角也变小。总结:解本题的关键是抓住:轻绳上各点的拉力大小相等,在点绳端向上移动的过程中,绳上拉力的大

9、小不变,但两段绳的拉力的夹角变大。固定轻杆作用力的方向不一定沿杆。(2)铰链轻杆即可转动的轻杆图5例10如图5所示,轻杆的一端铰链连接于墙壁上,另一端装有一光滑的小滑轮,细绳绕过小滑轮一端系住一重物,另一端拴于墙壁上的点,整个系统处于平衡状态。现把拴于墙上点的绳端向上移动,并保证系统始终处于平衡状态,则轻杆的作用力如何变化?解:把墙上点的绳端向上移动时,轻杆的作用力始终沿杆的方向;由于两段绳的作用力大小相等,故轻杆总是处在两绳夹角的角平分线上。点向上移动时,两段绳的夹角增大,轻杆必须顺时针方向转动达到新的对角线位置才可以使系统平衡。以轻绳与滑轮相接触点为研究对象,由平行四边形定则,可知两段绳的

10、拉力的合力变小。铰链轻杆的作用力变小,方向与水平面的夹角也变小。总结:当轻杆以铰链形式连接时,要使轻杆处于平衡状态,则两段轻绳的作用力的合力必须沿轻杆轴线方向。此题与例9中的情形是相同,但相异的是轻杆的作用力始终沿杆的方向,这是区分固定轻杆和铰链轻杆得关键。五能量的转化有异同在某一瞬间,物体由一种状态变化到另一种状态,从而引起运动和受力在短时间内发生急剧的变化,物理学上称之为突变问题。在突变的瞬间往往伴随着能量的转移、转化或耗散。在沿径向张紧瞬间,在其方向上的能量耗散;杆往往将其能量发生转移。例11轻杆长为L,一端用光滑轴固定,另一端系一个可视为质点,质量为的小球,把小球拉至图6所示的位置,无

11、初速度地自由释放到最低处的过程中,小球做什么运动?到最低处时速度多大?弹力多少?若其它条件不变,把轻杆换为细绳,则释放后小球做什么运动?到最低处时速度多大?弹力为多少?解:杆与球相连,做非匀速圆周运动,其轨迹为圆的一部分,只有重力做功,由机械能守恒,选取最低处为零势能面,则: 图6 由牛顿第二定律得 由两式解得: 绳连接时,球由到做自由落体运动,关于水平线对称,设处的速度为,且方向竖直向下,选取点为零能面, 在处 按图示的方向分解,在绳突然拉紧的瞬间,将径向的动能损耗掉,由到的过程中,有机械能守恒,选取点为零能面, 由速度的分解得 由牛顿第二定律得 由式解得总结:轻杆与球相连时,只有重力势能向

12、动能的转化;无能量损耗。轻绳与球相连时,在绳突然拉紧的瞬间,沿径向的动能将耗散掉,转化为其他形式的能。 例12如图7所示,A、B两小球用轻杆连接,A球只能沿内壁光滑的竖直滑槽运动,B球处于光滑水平面内开始时杆竖直,A、B两球静止由于微小的扰动,B开始沿水平面向右运动已知A球的质量为mA,B球的质量为mB,杆长为L则:(1)A球着地时的速度为多大?图7(2)A球机械能最小时,水平面对B球的支持力为多大?(3)若mA=mB,当A球机械能最小时,杆与竖直方向夹角的余弦值为多大?A球机械能的最小值为多大?(选水平面为参考平面)解:(1)A球着地时,B球的速度为0设此时A球速度为v,由系统机械能守恒得 解得 (2)当A球机械能最小时,B球的速度最大,此时B球的加速度为0,则杆对球的作用力为0设小球受到的支持力为N,对B球受力分析可得 N = mBg(3)设杆与竖直方向间夹角为,B球的速度为vB,此时A球的速度为vA,则 且vA和vB沿杆方向上分速度大小相等,即 联立解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论