




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、15 第十六章 二次根式课 题 16.1二次根式(1) 教 学 目 标1.经历二次根式概念的发生过程2.了解二次根式的概念3.理解二次根式何时有意义,何时无意义,会在简单情况下求根号内所有含字母的取值范围4.会求二次根式的值教 学 设 想教学重点: 二次根式的概念教学难点:例1的第(2)(3)题学生不容易理解。教 学 程 序 与 策 略一、 知识回顾:1、什么叫做平方根?一般地,如果一个数的平方等于a,那么这个数叫做a的平方根。2、什么叫算术平方根?正数的正平方根和零的平方根,统称算术平根。用表示讨论并解释:为什么a0 ?二、 新课教学做一做:课本P 4 的填空你认为所得的各代数式的共同特点是
2、什么?象 这样表示的算术平方根,且根号中含有字母的代数式叫做二次根式例1:求下列二次根式中字母a的取值范围:为了方便起见,我们把一个数的算术平方根也叫做二次根式。解:(1)由a+10 得,a-1字母a的取值范围是大于或等于-1的实数(2)由 0,得 1-2a0。即a<,字母a的取值范围是小于的实数(3)因为无论a取何值,都有(a-3)20,所以a的取值范围是全体实数说明:求字母的取值范围实质是:转化为解不等式(组)练习: 求下列二次根式中字母a的取值范围:例2:当x = -4 时,求二次根式 的值解:将x = -4 代入 二次根式得= = 3说明:与求代数式的值类比。1、若二次根式 的值
3、为3,求x的值.提高:2、物体自由下落时,下落距离h(米)可用公式 h=5t2来估计,其中t(秒)表示物体下落所经过的时间.(1)把这个公式变形成用h表示t的公式(2)一个物体从54.5米高的塔顶自由下落,落到地面需几秒(精确到0.1 秒)?3、当分别取下列值时,求二次根式的值:; ; .检测:求二次根式中的取值范围: (1) (2) (3) (4)附加题: (5) (6) (7)三、课堂小结:由学生总结,教师适当提问补充。本节课要掌握: 1形如(a0)的式子叫做二次根式,“”称为二次根号 2要使二次根式在实数范围内有意义,必须满足被开方数是非负数四、作业:教后反思 第十六章 二次根式课 题
4、16.1二次根式(2)教 学 目 标1理解(a0)是一个非负数和()2=a(a0),并利用它们进行计算和化简 2通过复习二次根式的概念,用逻辑推理的方法推出(a0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a0);最后运用结论严谨解题教 学 设 想1重点:(a0)是一个非负数;()2=a(a0)及其运用 2难点、关键:用分类思想的方法导出(a0)是一个非负数;用探究的方法导出()2=a(a0)教 学 程 序 与 策 略一、复习引入 (学生活动)口答 1什么叫二次根式? 2当a0时,叫什么?当a<0时,有意义吗? 老师点评(略) 二、探究新知 议一议:(学生分组讨论,提问
5、解答) (a0)是一个什么数呢? 老师点评:根据学生讨论和上面的练习,我们可以得出 (a0)是一个非负数 做一做:根据算术平方根的意义填空:()2=_;()2=_;()2=_;()2=_;()2=_;()2=_;()2=_ 老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4 同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2=a(a0) 例1 计算1()2 2(3)2 3()2 4()2 分析:我们可以直接利用()2=a(a0)的结论解题解:()2 =,(3)2 =32·()2=32·5=45,
6、()2=,()2= 三、巩固练习 计算下列各式的值:()2 ()2 ()2 ()2 (4)2 四、应用拓展 例2 计算1()2(x0) 2()2 3()2 4()2分析:(1)因为x0,所以x+1>0;(2)a20;(3)a2+2a+1=(a+1)0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)20所以上面的4题都可以运用()2=a(a0)的重要结论解题例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 五、归纳小结 本节课应掌握: 1(a0)是一个非负数; 2()2=a(a0);反之:a=()2(a0) 六、
7、布置作业 教后反思第十六章 二次根式课 题 16.1二次根式(3)教 学 目 标1、理解=a(a0)并利用它进行计算和化简2、通过具体数据的解答,探究=a(a0),并利用这个结论解决具体问题教 学 设 想1、重点:a(a0) 2难点:探究结论 3关键:讲清a0时,a才成立教 学 程 序 与 策 略一、复习引入 老师口述并板收上两节课的重要内容; 1形如(a0)的式子叫做二次根式; 2(a0)是一个非负数; 3()2a(a0) 那么,我们猜想当a0时,=a是否也成立呢?下面我们就来探究这个问题二、探究新知 (学生活动)填空: =_;=_;=_; =_;=_;=_ (老师点评):根据算术平方根的意
8、义,我们可以得到: =2;=0.01;=;=;=0;= 因此,一般地:=a(a0) 例1 化简 (1) (2) (3) (4)分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用=a(a0)去化简解:(1)=3 (2)=4 (3)=5 (4)=3三、巩固练习教材练习四、应用拓展 例2 填空:当a0时,=_;当a<0时,=_,并根据这一性质回答下列问题 (1)若=a,则a可以是什么数? (2)若=-a,则a可以是什么数? (3)>a,则a可以是什么数? 分析:=a(a0),要填第一个空格可以根据这个结论,第二空格就不行,应变形,使
9、“( )2”中的数是正数,因为,当a0时,=,那么-a0 (1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知=a,而a要大于a,只有什么时候才能保证呢?a<0 解:(1)因为=a,所以a0; (2)因为=-a,所以a0;(3)因为当a0时=a,要使>a,即使a>a所以a不存在;当a<0时,=-a,要使>a,即使-a>a,a<0综上,a<0五、归纳小结 本节课应掌握:=a(a0)及其运用,同时理解当a<0时,a的应用拓展六、布置作业 教后反思第十六章 二次根式课 题 16.2二次根式的乘法教 学 目 标1
10、、理解·(a0,b0),=·(a0,b0),并利用它们进行计算和化简2、利用逆向思维,得出=·(a0,b0)并运用它进行解题和化简教 学 设 想1、重点:·(a0,b0),=·(a0,b0)及它们的运用2、难点:发现规律,导出·(a0,b0)教 学 程 序 与 策 略一、复习引入 (学生活动)请同学们完成下列各题 1填空 (1)×=_,=_; (2)×=_,=_ (3)×=_,=_ 2.参考上面的结果,用“>、<或”填空 ×_,×_,×_二、探索新知 (学生活动)
11、让3、4个同学上台总结规律 老师点评:(1)被开方数都是正数; (2)两个二次根式的乘除等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数 一般地,对二次根式的乘法规定为 ·(a0,b0) 反过来: =·(a0,b0) 例1计算 (1)× (2)× (3)× (4)× 解:(1)×=(2)×=(3)×=9(4)×= 例2 化简(1) (2) (3)(4) (5) 解:(1)=×=3×4=12 (2)=×=4×9=36 (3
12、)=×=9×10=90 (4)=×=××=3xy (5)=×=3三、巩固练习 (1)计算(学生练习,老师点评) × 3×2 ·(2) 化简: ; ; ; ; 四、应用拓展 例3判断下列各式是否正确,不正确的请予以改正: (1) (2)×=4××=4×=4=8五、归纳小结本节课应掌握:(1)·=(a0,b0),=·(a0,b0)及运用六、布置作业 教后反思第十六章 二次根式课 题 16.2二次根式的除法教 学 目 标1、理解=(a0,b>0)
13、和=(a0,b>0)及利用它们进行运算2、 利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简教 学 设 想1重点:理解=(a0,b>0),=(a0,b>0)及利用它们进行计算和化简2难点关键:发现规律,归纳出二次根式的除法规定教 学 程 序 与 策 略一、复习引入 (学生活动)请同学们完成下列各题: 1写出二次根式的乘法规定及逆向等式 2填空 (1)=_,=_; (2)=_,=_; (3)=_,=_; (4)=_,=_规律:_;_;_;_ 二、探索新知 刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习
14、和回答,我们可以得到: 一般地,对二次根式的除法规定:=(a0,b>0), 反过来,=(a0,b>0) 下面我们利用这个规定来计算和化简一些题目 例1计算:(1) (2) (3) (4)解:(1)=2 (2)=×=2(3)=2 (4)=2 例2化简: (1) (2) (3) (4)解:(1)= (2)= (3)= (4)= 三、巩固练习 课本练习题 四、应用拓展 例3已知,且x为偶数,求(1+x)的值分析:式子=,只有a0,b>0时才能成立因此得到9-x0且x-6>0,即6<x9,又因为x为偶数,所以x=8 解:由题意得,即 6<x9 x为偶数 x
15、=8 原式=(1+x) =(1+x) =(1+x)= 当x=8时,原式的值=6 五、归纳小结 本节课要掌握=(a0,b>0)和=(a0,b>0)及其运用 六、布置作业 教后反思第十六章 二次根式课 题 16.2二次根式的乘除(3)教 学 目 标1、理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式2、通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求教 学 设 想1重点:最简二次根式的运用2难点关键:会判断这个二次根式是否是最简二次根式教 学 程 序 与 策 略一、复习引入 (学生活动)请同学们完成下列各题(请三
16、位同学上台板书) 1计算(1),(2),(3) 老师点评:=,=,= 2现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径的比是_ 它们的比是二、探索新知 观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点: 1被开方数不含分母; 2被开方数中不含能开得尽方的因数或因式 我们把满足上述两个条件的二次根式,叫做最简二次根式 那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式 学生分组讨论,推荐34个人到黑板上板书老师点评:不是=. 例1(1) ; (2) ; (3) 三、巩固练习 1、 课本练习 2、化简:(1) =
17、_;(2) =_;(3) =_. 3、计算 (1)·(-)÷(m>0,n>0) (2)-3÷()× (a>0)四、应用拓展例2观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:=-1,=-, 同理可得:=-, 从计算结果中找出规律,并利用这一规律计算 (+)(+1)的值 分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的 解:原式=(-1+-+-+-)×(+1) =(-1)(+1) =2002-1=2001五、归纳小结本节课应掌握:最简二次根式的概念及其运用六、布置作业
18、 教后反思第十六章 二次根式课 题 16.2二次根式的加减(1)教 学 目 标1、理解和掌握二次根式加减的方法2、先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解再总结经验,用它来指导根式的计算和化简教 学 设 想1重点:二次根式化简为最简根式2难点关键:会判定是否是最简二次根式教 学 程 序 与 策 略一、学生活动:计算下列各式 (1)2x+3x; (2)2x2-3x2+5x2; (3)x+2x+3y; (4)3a2-2a2+a3 教师点评:同类项合并就是字母不变,系数相加减二、探索新知 学生活动:计算下列各式(1)2+3 (2)2-3+5 (3)+2+3 (4)3-2+ 老师点评: (1)如果我们把当成x,不就转化为上面的问题吗? 2+3=(2+3)=5 (2)把当成y; 2-3+5=(2-3+5)=4=8 (3)把当成z; +2+ =2+2+3=(1+2+3)=6 (4)看为x,看为y 3-2+ =(3-2)+ =+ 因此,二次根式的被开方数相同是可以合并的,如2与表面上看是不相同的,但它们可以合并吗
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冒险改编权独家授权协议
- 供应链信用风险控制与合作协议
- 电信行业数据安全保密及用户权益保护协议
- 影视特效爆破控制器租赁与现场施工指导合同
- 商业宣传册设计制作劳务合同
- 社区共享厨房加盟店顾客满意度调查与提升合同
- 实验动物手术室租赁合同(含实验数据共享)
- 建筑工程安全质量补充协议
- 电力设备省级总代理采购供应合同
- DB42-T 2038.1-2023 雪茄烟叶生产技术规程 第1部分:立体育苗
- 卫生统计学-回归与相关
- 德国政治制度简介课件
- 古诗《江上渔者》讲课稿课件
- 高标准基本农田建设项目监理月报1期
- 水质自动在线监测系统技术协议1010审计
- DBJ04∕T 258-2016 建筑地基基础勘察设计规范
- 七年级地理下双向细目表
- 企业风险评估报告模板
- 网吧员工劳动合同书
- Revit基础入门课件
- 小升初英语奥数题
评论
0/150
提交评论