版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高考数学精品复习资料 2019.5函数02二、填空题定义一种运算,令,且,则函数的最大值是_.设函数_.函数f(x)的定义域为d,若对于任意的x1,x2d,当x1<x2时都有f(x1)f(x2),则称函数f(x)为d上的非减函数.设f(x)为定义在0,1上的非减函数,且满足一下三个条件:(1)f(0)=0; (2)f(1-x)+f(x)=1 x0,1; (3)当x0,时,f(x)x恒成立,则f()+f()= .设f(x)=则f(f(-2)=_.已知函数的图像与函数的图像没有公共点,则实数的取值范围是 已知a>0,且a1,若函数有最大值,则不筹式的解集为 ;函数f(x)=ax+的值域
2、为_. 已知函数f(x)=若f(x)在(-,+)上单调递增,则实数a的取值范围为_。定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点,如是上的平均值函数,0就是它的均值点.现有函数是上的平均值函数,则实数的取值范围是 .已知,当时,则当时, .已知函数的值域为,则的取值范围是 .函数的单调递减区间为 .已知,则 ( ).若,则的定义域为 .已知函数 ,函数,若存在,使得成立,则实数的取值范围是_.定义在上的函数,当时.若,则p,q,r的大小关系为_.三、解答题对于函数若存在,成立,则称为的不动点已知(1)当时,求函数的不动点;(2)若对任意实数,函数
3、恒有两个相异的不动点,求的取值范围;(3)在(2)的条件下,若图象上、两点的横坐标是函数的不动点,且、两点关于直线对称,求的最小值已知函数对任意实数恒有,且当x0时,又.(1)判断的奇偶性;(2)求证:是上的减函数;(3)求在区间3,3上的值域;(4)若,不等式恒成立,求的取值范围.答案填空题 【答案】【解析】令,则由运算定义可知,当,即时,该函数取得最大值.由图象变换可知,所求函数的最大值与函数在区间上的最大值相同. 【答案】【解析】令得,即。令得。令得。 1 -2 【答案】【解析】所以有最小值2,要使函数有最大值,则指数函数单调递减,则有,由得,即,解得,即不等式的解集为。 【答案】【解析
4、】令则且,所以,所以原函数等价为,函数的对称轴为,函数开口向上。因为,所以函数在上函数单调递增,所以,即,所以函数的值域为。 【答案】【解析】要使函数在r上单调递增,则有,即,所以,解得,即的取值范围是。 【答案】【解析】因为函数是上的平均值函数,所以,即关于的方程,在内有实数根,即,若,方程无解,所以,解得方程的根为或.所以必有,即,所以实数的取值范围是,即. 【答案】【解析】由,可知函数关于对称,当时,所以. 【答案】或【解析】令,要使函数的值域为,则说明,即二次函数的判别式,即,即,解得或,所以的取值范围是或. 【答案】【解析】令,则在定义域上为减函数.由得,或,当时,函数递增,根据复合函数的单调性可知,此时函数单调递减,所以函数的递减区间为. 【答案】,【解析】令,则,所以,所以,. 【答案】【解析】要使函数有意义,则有,即,所以解得,即不等式的定义域为. 【答案】 解:当时,即.当时,所以当,函数单调递增,此时.综上函数.当时,所以, ,即.若存在,使得成立,则有的最大值大于等于0,的最小值小于等于1,即,解得,即,所以实数的取值范围. 解答题解:(1)时,函数的不动点为1和3;(2)即有两个不等实根,转化为有两个不等实根,需有判别式大于0恒成立即,的取值范围为;(3)设,则,a,b的中点m的坐标为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)《GBT 33542-2017多效蒸馏海水淡化装置通 用技术要求》(2026年)深度解析
- 深度解析(2026)《GBT 33442-2016海洋能调查仪器设备通 用技术条件》
- 深度解析(2026)《GBT 33373-2016防腐蚀 电化学保护 术语》
- 医疗数据安全标准对接:行业共识与协作机制
- 医疗数据安全成熟度评估:区块链驱动的智能合约应用
- 医疗数据安全应急预案编制与演练
- 胸痛急救流程课件
- 2026届新疆维吾尔自治区沙湾一中生物高三第一学期期末统考试题含解析
- 胆结石病因课件
- (4)5G-A基站故障分析与处理
- 销售行业合同范本
- 英语试卷+答案黑龙江省哈三中2025-2026学年上学期高二学年12月月考(12.11-12.12)
- 中北大学2025年招聘编制外参编管理人员备考题库(一)参考答案详解
- 中华联合财产保险股份有限公司2026年校园招聘备考题库及一套完整答案详解
- 诗经中的爱情课件
- 2025年烟花爆竹经营单位安全管理人员考试试题及答案
- 2025天津大学管理岗位集中招聘15人参考笔试试题及答案解析
- 2025年云南省人民检察院聘用制书记员招聘(22人)考试笔试参考题库及答案解析
- TCAMET02002-2019城市轨道交通预埋槽道及套筒技术规范
- 24- 解析:吉林省长春市2024届高三一模历史试题(解析版)
- 临床护士工作现状分析
评论
0/150
提交评论