




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十章第十章 动态规划动态规划1多阶段决策过程最优化问题举例多阶段决策过程最优化问题举例2基本概念、基本方程与最优化原理基本概念、基本方程与最优化原理3动态规划的应用动态规划的应用4 例题例题1 1多阶段决策过程最优化问题举例多阶段决策过程最优化问题举例例例1 最短路径问题最短路径问题 下图表示从起点A到终点E之间各点的距离。求A到E的最短路径。BACBDBCDEC4123123123221647248386756110643751用穷举法的计算量用穷举法的计算量: 如果从A到E的站点有k个,除A、E之外每站有3个位置则总共有3k-12条路径; 计算各路径长度总共要进行 (k+1) 3k-12
2、次加法以及3k-12-1次比较。随着 k 的值增加时,需要进行的加法和比较的次数将迅速增加; 例如当 k=20时,加法次数为 4.25508339662271015 次,比较 1.37260754729771014 次,若用1亿次/秒的计算机计算需要约508天。讨论: 1、以上求从A到E的最短路径问题,可以转化为四个性质完全相同,但规模较小的子问题,即分别从Di 、Ci、Bi、A到E的最短路径问题。 第四阶段:两个始点D1和D2,终点只有一个; 表10-1分析得知:从D1和D2到E的最短路径唯一。 阶段4本阶段始点(状态)本阶段各终点(决策)到E的最短距离本阶段最优终点(最优决策) E D1
3、D2 10* 6 10 6 E E 第三阶段:有三个始点C1,C2,C3,终点有D1,D2,对始点和终点进行分析和讨论分别求C1,C2,C3到D1,D2 的最短路径问题: 表10-2分析得知:如果经过C1,则最短路为C1-D2-E; 如果经过C2,则最短路为C2-D2-E; 如果经过C3,则最短路为C3-D1-E。 阶段3本阶段始点(状态)本阶段各终点(决策)到E的最短距离本阶段最优终点(最优决策) D1 D2 C1 C2 C3 8+10=18 7+10=17 1+10=11 6+6=12 5+6=11 6+6=12 12 11 11 D2 D2 D1第二阶段:有4个始点B1,B2,B3,B4
4、,终点有C1,C2,C3。对始点和终点进行分析和讨论分别求B1,B2,B3,B4到C1,C2,C3 的最短路径问题: 表10-3 分析得知:如果经过B1,则走B1-C2-D2-E; 如果经过B2,则走B2-C3-D1-E; 如果经过B3,则走B3-C3-D1-E; 如果经过B4,则走B4-C3-D1-E。 阶段2本阶段始点(状态) 本阶段各终点(决策)到E的最短距离本阶段最优终点(最优决策) C1 C2 C3 B1 B2 B3 B4 2+12=14 4+12=16 4+12=16 7+12=19 1+11=12 7+11=18 8+11=19 5+11=16 6+11=17 2+11=13 3
5、+11=14 1+11=12 12 13 14 12 C2 C3 C3 C3第一阶段:只有1个始点A,终点有B1,B2,B3,B4 。对始点和终点进行分析和讨论分别求A到B1,B2,B3,B4的最短路径问题: 表10-4最后,可以得到:从A到E的最短路径为A B4 C3 D1 E 阶段1本阶段始点(状态) 本阶段各终点(决策)到E的最短距离本阶段最优终点(最优决策) B1 B2 B3 B4 A 4+12=16 3+13=163+14=172+12=14 12 C2 以上计算过程及结果,可用图2表示,可以看到,以上方法不仅得到了从A到D的最短路径,同时,也得到了从图中任一点到E的最短路径。 以上
6、过程,仅用了22次加法,计算效率远高于穷举法。BACBDBCDEC412312312332164724838675161060106121111121314144B127512一、基本概念: 1、阶段k:表示决策顺序的离散的量,阶段可以按时间或空间划分。 2、状态sk:能确定地表示决策过程当前特征的量。状态可以是数量,也可以是字符,数量状态可以是连续的,也可以是离散的。 3、决策xk:从某一状态向下一状态过渡时所做的选择。决策是所在状态的函数,记为xk(sk)。 决策允许集合Dk(sk):在状态sk下,允许采取决策的全体。 4、策略Pk,n(sk):从第k阶段开始到最后第n阶段的决策序列,称k
7、子策略。P1,n(s1)即为全过程策略。 5、状态转移方程 sk+1=Tk(sk, xk):某一状态以及该状态下的决策,与下一状态之间的函数关系。2 2基本概念、基本方程与最优化原理基本概念、基本方程与最优化原理 6、阶段指标函数vk(sk, xk):从状态sk出发,选择决策xk所产生的第k阶段指标。 过程指标函数Vk,n(sk, xk, xk+1, xn):从状态sk出发,选择决策xk, xk+1, , xn所产生的过程指标。动态规划要求过程指标具有可分离性,即 Vk,n(sk, xk, xk+1, , xn) = vk(sk, xk)+Vk+1(sk+1, xk+1, , xn)称指标具有
8、可加性,或 Vk,n(sk, xk, xk+1, , xn) = vk(sk, xk)Vk+1(sk+1, xk+1, , xn)称指标具有可乘性。二、基本方程: 最优指标函数fk(sk):从状态sk出发,对所有的策略Pk,n,过程指标Vk,n的最优值,即 ),()(,)(nkknksDxkkPsVsfoptkkk 对于可加性指标函数,上式可以写为 上式中“opt”表示“max”或“min”。对于可乘性指标函数,上式可以写为 以上式子称为动态规划最优指标的递推方程,是动态规划的基本方程。 终端条件:为了使以上的递推方程有递推的起点,必须要设定最优指标的终端条件,一般最后一个状态n+1下最优指标
9、fn+1(sn+1) = 0。nksfxsvsfkkkkksDxkkoptkkk, 2 , 1)(),()(11)(nksfxsvsfkkkkksDxkkoptkkk, 2 , 1)(),()(11)(三、最优化原理三、最优化原理 作为整个过程的最优策略具有如下性质: 不管在此最优策略上的某个状态以前的状态和决策如何,对该状态来说,以后的所有决策必定构成最优子策略。就是说,最优策略的任意子策略都是最优的。一、资源分配问题一、资源分配问题 例2. 某公司拟将某种设备5台,分配给所属的甲、乙、丙三个工厂。各工厂获得此设备后,预测可创造的利润如表10-5所示,问这5台设备应如何分配给这3个工厂,使得
10、所创造的总利润为最大? 表10-5 盈利 工厂设备台数 甲 厂 乙 厂 丙 厂 0 0 0 0 1 3 5 4 2 7 10 6 3 9 11 11 4 12 11 12 5 13 11 123 3 动态规划的应用动态规划的应用解:将问题按工厂分为三个阶段,甲、乙、丙三个厂分别编号为1、2、3厂。设 sk= 分配给第k个厂至第3个厂的设备台数(k=1、2、3)。 xk=分配给第k个设备台数。 已知s1=5, 并有 从与的定义,可知以下我们从第三阶段开始计算。222223),(xsxsTskskx33xs 111112),(xsxsTs 第三阶段: 显然将台设备都分配给第3工厂时,也就是时,第3
11、阶段的指标值(即第3厂的盈利)为最大,即 由于第3阶段是最后的阶段,故有 其中可取值为0,1,2,3,4,5。其数值计算见表106。 )5 , 4 , 3 , 2 , 1 , 0(33ss).,(),(max)(333333333ssrxsrsfx3x),(),(max3333333ssrxsrx33xs 表表106 0123450000144126623111134121245121253x3s),(333xsr)(33sf3*x 其中表示取3子过程上最优指标值时的决策,例如在表10-6中可知当=4时,有有此时,即当时,此时取(把4台设备分配给第3厂)是最优决策,此时阶段指标值(盈利)为12
12、,最优3子过程最优指标值也为12。 第二阶段: 当把台设备分配给第2工厂和第3工厂时,则对每个值,有一种最优分配方案,使最大盈利即最优2子过程最优指标函数值为 3*x)(33sf3x3s;12)4 , 4(3r,12)4(3f43*x43s43x)5 , 4 , 3 , 2 , 1 , 0(22ss2s)(),(max)(33222222sfxsrsfx因为上式也可写成其数值计算如表107所示。表107 , 223xss0123450 00104 51206 54 1023011 56 110 1424012 114110 161,25012 512 116114 1102122x2s)(),
13、(233222xsfxsr)(22sf2*x00050104101156101110)(),(max)(223222222xsfxsrsfx 其中在的这一行里,当时,这里从表105中可知,把1台设备交给乙厂所得盈利数即可,知,这里从表106查即可知=11。同样可知当时,可知 ;当时,;当时,;当时, ;由于,不可能分2厂5台设备,故时,栏空着不填。从这些数值中取得最大即得,即有=16。在此行中我们在取最大值的 上面加一横以示区别,也可知这时的最优决策为1或2。42s12x16115) 3() 1 , 4() 14() 1 , 4()(),(3232223222frfrxsfxsr) 1 , 4
14、(2r5) 1 , 4(2r)3()14(33ff)3(3f) 3(3f22x16610)2()2 , 4()24()2 , 4()(),(3232223222frfrxsfxsr02x12120)04()0 , 4(32 fr32x411)34()3 , 4(32 fr42x11011)44()4 , 4(32 fr42s52x)54()5 , 4(32 fr)4(2f)4(2f)(),(223222xsfxsr2x第一阶段:把台设备分配给第1,第2,第3厂时,最大盈利为其中可取值0,1,2,3,4,5.数值计算见表108 表10-8 然后按计算表格的顺序推算,可知最优分配方案有两个: 1.
15、由于,根据,查表107可知,再由 ,求得。即分配给甲厂0台,乙厂2台,丙厂3台。 2.由于,根据 ,查表107可 )5(11ss),5(), 5(max)5(111111xfxrfx1x0123455 316 9+10 12+5 13+0 21 0,21x1s)5(), 5(1211xfxr210147)(1xf1*x01*x5051*12xss02*x3252*23xss333* sx21*x3251*12xss知,再由 ,求得,即分配给甲厂2台,乙厂2台,丙厂1台。这两种分配方案都能得到最高的总盈利21万元。 22*x1232*23xss133* sx二、背包问题二、背包问题 设有n种物品
16、,每一种物品数量无限。第i种物品每件重量为wi公斤,每件价值ci元。现有一只可装载重量为W公斤的背包,求各种物品应各取多少件放入背包,使背包中物品的价值最高。 这个问题可以用整数规划模型来描述。设xi为第i种物品装入背包的件数(i =1, 2, , n),背包中物品的总价值为z,则 Max z = c1x1+c2x2+ +cnxn s.t. w1x1+w2x2+wnxnW x1, x2, , xn0 且为整数。 下面用动态规划逆序解法求解它。设阶段变量k:第k次装载第k种物品(k=1, 2, , n)状态变量sk:第k次装载时背包还可以装载的重量;决策变量uk = xk:第k次装载第k种物品的
17、件数;决策允许集合:Dk(sk) = xk | 0 xksk/wk,xk为整数;状态转移方程: sk+1 = sk wkxk;阶段指标: vk = ckxk;最优过程指标函数fk(sk):第k到n阶段容许装入物品的最大使用价值;递推方程: fk(sk) = max ckxk+fk+1(sk+1) = max ckxk+fk+1(sk wkxk); xDk(sk) 终端条件: fn+1(sn+1) = 0。管管 理理 运运 筹筹 学学24甲乙丙重量(公斤)231单件价值658030例3.某咨询公司有10个工作日可以去处理四种类型的咨询项目,每种类型的咨询项目中待处理的客户数量、处理每个客户所需工
18、作日数以及所获得的利润如表109所示。显然该公司在10天内不能处理完所有的客户,它可以自己挑选一些客户,其余的请其他咨询公司去做,应如何选择客户使得在这10个工作日中获利最大? 表109 咨询项目类型待处理客户数处理每个客户所需工作日数处理每个客户所获利润123443221347281120解:用动态规划来求解此题。我们把此问题分成四个阶段,第一阶段我们决策将处理多少个第一种咨询项目类型中的客户,第二阶段决策将处理多少个第二种咨询项目类型中的客户,第三阶段、第四阶段我们也将作出类似的决策。我们设分配给第k种咨询项目到第四种咨询项目的所有客户的总工作日(第k阶段的状态变量)。 =在第k种咨询项目
19、中处理客户的数量(第k阶段的决策变量)。已知10并有 kx1s,),(111112xsxsTsks 并从与的定义可知从第四阶段开始计算:显然将个工作日尽可能分配给第四类咨询项目,即时,第四阶段的指标值为最大,其中,表示取不大于的最大整数,符号为取整符号,故有由于第四阶段是最后的阶段,故有,3),(222223xsxsTs.4),(333334xsxsTskskx447xs 4s)10, 1 , 0(4s7/44sx 7/4s7/4s ).7/,(),(max4444444ssrxsrx),7/,(),(max)(4444*44444ssrxsrsfx因为至多为10,其数值计算见表1010。 表
20、表10104s010001002 00300400500600702018020190201100114x4s),(444xsr)(44sf4*x000000020202020第三阶段:当把个工作日分配给第四类和第三类咨询项目时,则对每个值,都有一种最优分配方案,使其最大盈利即最优3子过程最优指标函数值为 因为因为至多为10,所以的取值可为0,1,2。其数值计算见表1011。)10, 3 , 2 , 1 , 0(33ss3s. )(),(max)(33222222sfxsrsfx2233xss. )4(),(max)(334333333xsfxsrsfx3s3x 表表1011 0 1 2000
21、 1 00 200 300 40011 1 50011 1 60011 1 7 11+0 20 0 8020 11+0 22 2 9020 11+0 22 2 10020 11+0 22 23x3s)4(),(334333xsfxsr)(33sf3*x00000020001101101102202202200 第二阶段: 同样以每个值都有一种最优分配方案,使其最大盈利即最优2子过程最优指标函数值为:因为,故有因为至多为10,所以的取值为0,1,2,3。其数值计算见表1012。. )3(),(max)(223222222xsfxsrsfx2233xss. )3(),(max)(223222222
22、xsfxsrsfx2s2x2s表表10-12 第一阶段: 我们已知,又因为 ,同样有 因为 ,故可取值为0,1,2, ,10。其数值计算见表1013。 表1013101s. )(),(max)(112111111xsfxsrsfx112xss.)10(),10(max)10(121111xfxrfx101s1x 从表1013可知,从而得10010,在表1012的的这一行可知,由,查表1011的的这一行可知,最后由,查表10-10的的这一行得,综上所述得最优解为:此时最大盈利为28。现在我们不妨假设该咨询公司的工作计划有所改变,只有8个工作日来处理这四类咨询项目,那么该咨询公司如何选择客户使得获
23、利最大呢?我们不必从头开始重做这个问题,而只要在第一阶段上把改成8,重新计算就可得到结果,如表1014所示,这是动态规划的一个好处。28)10(1f01*x1*210 xs102s12*x731032*23xss73s03*x7073*34xss74s14*x0, 1, 03*2*1*xxx, 14*x4s表1014如上一样可从表1014,1012,1011,1010得到两组最优解如下:它们的最优解(即最大盈利)都为22。一旦咨询的工作日不是减少而是增加,那么我们不仅要重新计算第一阶段,而且要在第二、第三、第四阶段的计算表上补上增加的工作日的新的信息,也可得到新的结果。3042)4321xxx
24、x1001)4*3*2*1*xxxx 实际上,背包问题我们也可以用整数规划来求解,如果背包携带物品重量的限制为W公斤,这N种物品中第i种物品的重量为,价值为,第i种物品的总数量的,我们可以设表示携带第i种物品的数量,则其数学模型为:S.T. 且为整数。 我们不妨用此模型去求解例3,也一定得出同样的结果。iwicinix,max1Niiixcf0), 2 , 1(1iiiNiiixNinxWxw三、生产与存贮问题 例4.某公司为主要电力公司生产大型变压器,由于电力采取预订方式购买,所以该公司可以预测未来几个月的需求量。为确保需求,该公司为新的一年前四个月制定一项生产计划,这四个月的需求如表101
25、5所示。生产成本随着生产数量而变化。调试费为4,除了调度费用外,每月生产的头两台各花费为2,后两台花费为1。最大生产能力每月为4台,生产成本如表1016所示。表1015 表表1016每台变压器在仓库中由这个月存到下个月的储存费为1,仓库的最大储存能力为3台,另外,知道在1月1日时仓库里存有一台变压器,要求在4月30日仓库的库存量为零。试问该公司应如何制定生产计划,使得四个月的生产成本和储存总费用最少?解:我们按月份来划分阶段,第i个月为第i阶段:(i=1,2,3,4). 设 为第k阶段期初库存量; k=1,2,3,4 ks为第k阶段生产量; k=1,2,3,4为第k阶段需求量; k=1,2,3
26、,4,这已在表10-15中告诉我们。因为下个月的库存量等于上个月的库存量加上上个月的产量减去上个月的需求量,我们就得到了如下状态转移方程:因为,故有因为,故有kxkd, 1112dxss11s, 1121dxs, 2223dxss, 3334dxss, 4445dxss05s, 4440dxs由于必须要满足需求,则有通过移项得到 另一方面,第k阶段的生产量必不大于同期的生产能力(4台),也不大于第k阶段至第四阶段的需求之和与第k阶段期初库存量之差,否则第k阶段的生产量就要超过从第k阶段至第四阶段的总需求,故有以下我们从第四阶段开始计算:从以上的状态转移方程可知这样就有),4, 3 ,2, 1(
27、,kdxskkkkkksdxkx44 ,)(minkikiksdx,0444dxs,34444ssdx)3 ,(),(min)(444444444ssrxsrsfx 这里的阶段指标可以分成两部分,即生产成本与储存费,即为 由于第四阶段末要求库存为零,即有,这样可得 对于每个的可行值,的值列于表1017。 表1017),(nnnxsr),()(),(nnnnnnnnxshxcxsr001),(444xsh)3()3 ,()3()3 ,()(444444444444scsshscssrsf4s)(44sf表中当时,可知第四阶段要生产台,从表1016可知总成本为9,同样可以算出当为1,2,3时的情况
28、,结果已列于表1017中。第三阶段:此时有:因为以及所以有例如,当第三阶段初库存量时,生产量为2时,则所以生产成本为8,第三阶段末库存为2时,储存费为,而04s3344sx4s)(1)(),()(),(3333333333333dxsxcxshxcxsr,3334dxss, 13d)() 1(1)(min)(443333)4,4min(133333sfxsxcsfsxs) 1() 1(1)(min3343333)4,4min(1333xsfxsxcsxs13s3x2121333dxs221),2()()(4333444fdxsfsf查1017表可知,这样可知,填入表1018中的栏内,其他结果如
29、表1018所示 : 表1018 第二阶段:因为所以有6) 2 (4f,16628)2()2 , 1 (43 fr2, 133xs, 422232dxssd 计算结果如表1019所示。 表1019 )(),(min)(33222)4,8min(422222sfxsrsfsxs)(),()(min3322222)4,8min(4222sfxshxcsxs)()(1)(min222322222)4,8min(4222dxsfdxsxcsxs)4()4(1)(min2232222)4,8min(4222xsfxsxcsxs第一阶段:因为故有计算结果见表1020。 表1020, 1, 2211111sd
30、xssd)(),(min) 1 ()(22111411111sfxsrfsfx)21 ()21 (1)(min12111411xfxxcx利用递推关系可以从表1020,表1019,表1018和表1017得到两组最优解: 这时有最低总成本29。0441)4321xxxx3042)4321xxxxo 四、系统可靠性问题 例例5.某科研项目组由三个小组用不同的手段分别研究,它们失败的概率各为0.40,0.60,0.80。为了减少三个小组都失败的可能性,现决定给三个小组中增派两名高级科学家,到各小组后,各小组科研项目失败概率如下表: 问如何分派科学家才能使三个小组都失败的概率(即科研项目最终失败的概率
31、)最小? 高级科学家小组12300.400.600.8010.200.400.5020.150.200.30 解:用逆序算法。设 阶段:每个研究小组为一个阶段,且阶段123小组123计算o当n=3时,o当n=2时, s3 f3*(s3) x3*008001050120302 x2s2f2(s2,x2)=P2(x2) f3*(s2-x2) f2*(s2) x2*012004804801030032030020180200160162o当n=1时, 最优解为 x1*=1,x2*=0,x3*=1;科研项目最终失败的概率为0.060。 x1s1f1(s1,x1)=P1(x1) f2*(s1-x1)f2
32、*(s2)x2*01220064 0060 0072 0060 1管管 理理 运运 筹筹 学学51五、货郎担问题(TSP)115243576343215125341/1432512511214106104131112396581052C1C3D1AB1B3B2D2EC2一、最短路径问题求从A到E的最短路径4 例题例题2511214106104131112396581052C1C3D1AB1B3B2D2EC2f5(E)=02511214106104131112396581052C1C3D1AB1B3B2D2EC2f4(D1)=5f5(E)=0505)()()(5114EfEDdDf2511214
33、106104131112396581052C1C3D1AB1B3B2D2EC2f4(D2)=2f5(E)=0f4(D1)=5202)()()(5224EfEDdDf2511214106104131112396581052C1C3D1AB1B3B2D2EC2f4(D2)=2f5(E)=0f3(C1)=8f4(D1)=5112421141113DC8118min2953min)D(f)D,C()D(f)D,C(min)C(f最优决策2511214106104131112396581052C1C3D1AB1B3B2D2EC2f4(D2)=2f5(E)=0f3(C2)=7f4(D1)=5f3(C1)=
34、8222422141223DC7711min2556min)D(f)D,C()D(f)D,C(min)C(f最优决策2511214106104131112396581052C1C3D1AB1B3B2D2EC2f4(D2)=2f5(E)=0f3(C3)=12f4(D1)=5f3(C1)=8f3(C2)=7232423141333DC121213min21058min)D(f)D,C()D(f)D,C(min)C(f最优决策2511214106104131112396581052C1C3D1AB1B3B2D2EC2f4(D2)=2f5(E)=0f3(C3)=12f4(D1)=5f2(B1)=20f
35、3(C2)=7f3(C1)=81133312321131112CB20222120min1210714812min)C(f)C,B()C(f)C,B()C(f)C,B(min)B(f最优决策2511214106104131112396581052C1C3D1AB1B3B2D2EC2f4(D2)=2f5(E)=0f3(C3)=12f4(D1)=5f2(B2)=14f3(C2)=7f3(C1)=8f2(B1)=211233322322131222CB14161714min12471086min)C(f)C,B()C(f)C,B()C(f)C,B(min)B(f最优决策251121410610413
36、1112396581052C1C3D1AB1B3B2D2EC2f4(D2)=2f5(E)=0f3(C3)=12f4(D1)=5f2(B3)=19f3(C2)=7f3(C1)=8f2(B1)=21f2(B2)=142333332323131332CB19231921min1211712813min)C(f)C,B()C(f)C,B()C(f)C,B(min)B(f最优决策2511214106104131112396581052C1C3D1AB1B3B2D2EC2f4(D2)=2f5(E)=0f3(C3)=12f4(D1)=5f2(B3)=19f3(C2)=7f3(C1)=8f1(A)=19f2(
37、B2)=14f2(B1)=2123232221211BA19201923min191145212min)B(f)B,A()B(f)B,A()B(f)B,A(min)A(f最优决策2511214106104131112396581052C1C3D1AB1B3B2D2EC2f4(D2)=2f5(E)=0f3(C3)=12f4(D1)=5f2(B3)=19f3(C2)=7f3(C1)=8f1(A)=19f2(B2)=14f2(B1)=21状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态A ( A,B2) B22511214106104131112396581052C1C3D1AB
38、1B3B2D2EC2f4(D2)=2f5(E)=0f3(C3)=12f4(D1)=5f2(B3)=19f3(C2)=7f3(C1)=8f1(A)=19f2(B2)=14f2(B1)=21状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态A ( A,B2) B2 (B2,C1) C12511214106104131112396581052C1C3D1AB1B3B2D2EC2f4(D2)=2f5(E)=0f3(C3)=12f4(D1)=5f2(B3)=19f3(C2)=7f3(C1)=8f1(A)=19f2(B2)=14f2(B1)=21状态 最优决策 状态 最优决策 状态 最优
39、决策 状态 最优决策 状态A ( A,B2) B2 (B2,C1) C1 (C1,D1) D12511214106104131112396581052C1C3D1AB1B3B2D2EC2f4(D2)=2f5(E)=0f3(C3)=12f4(D1)=5f2(B3)=19f3(C2)=7f3(C1)=8f1(A)=19f2(B2)=14f2(B1)=21状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态A ( A,B2) B2 (B2,C1) C1 (C1,D1) D1 (D1,E) E从A到E的最短路径为19,路线为AB 2C1 D1 E 资源分配问题 4台设备,分配给A、B、
40、C三个工厂,每个工厂分配到不同数量的设备所能产生的效益(万吨)如下表所示。求设备的最优分配方案,使总效益最大。设备台数产生的效益(万吨)工厂A工厂B工厂C0000115129228282734042474505553动态规划模型工厂A工厂B工厂C k=1k=2k=3k=4状态变量xk:尚未分配的设备台数x2x3x4决策变量dk:每个工厂分配的设备台数d1d2d3x2=x1-d1阶段kx1x3=x2-d2x4=x3-d3决策允许集合Dk(xk):分配台数dk的范围0d1 x10d2 x20d3 x3状态转移方程Dk(xk):状态如何随上一状态以及决策变化阶段指标Vk(xk,dk):每个工厂分配设
41、备产生的效益v1(x1,d1)v2(x2,d2)v3(x3,d3)最优指标函数fk(xk)fk(xk)=maxvk(xk,dk)+fk+1(xk+1)终端条件fn(xn)f4(x4)=0 x3D3(x3)x4v3(x3,d3)v3(x3,d3)+f4(x4)f3(x3)d3*00000+0=00010100+0=0911099+0=9*20200+0=02721199+0=9202727+0=27*30300+0=04731299+0=9212727+0=27304747+0=47*40400+0=05341399+0=9222727+0=27314747+0=47405353+0=53*x3
42、f3(x3)d3*000191227234734534f3(x3)f4(x4)x4f4(x4)0010203040 x2D2(x2)x3v2(x2,d2)v2(x2,d2)+f3(x3)f2(x2)d2*00000+0=00010100+9=9121101212+0=12*20200+27=27282111212+9=21202828+0=28*30300+47=47*470121212+27=39212828+9=37304242+0=4240400+53=53591131212+47=59*222828+27=55314242+9=51405555+0=55x3f3(x3)d3*000191227234734534f3(x3)x2f2(x2)d2*0001121228234704591f2(x2)f4(x4)=0 x1D1(x1)x2v1(x1,d1)v1(x1,d1)+f2(x2)f1(x1)d1*40400+59=59621131515+47=62*222828+28=56314040+12=52405050+0=50 x1f1(x1)d1*4621x2f2(x2)d2*0001121228234704591x3f3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年离婚子女监护权变更与财产分割及共同抚养协议合同
- 设备维修知识培训
- 生态茶园茶叶生产设备租赁与加工服务合同范本
- 2025年高品质住宅小区绿色物业管理与节能改造合同
- 保险培训创新课件
- 《计算机网络技术与应用》课件第7章
- 按揭买房的合同(标准版)
- 定义的电子合同(标准版)
- 企业员工培训课件标准
- 精煤基础知识培训总结报告课件
- 2025年湖北省武汉市中考语文真题(含答案)
- 中国心房颤动管理指南2025解读
- Unit1Weletotheunit课件译林版八年级英语上册
- 离职交接事项协议书范本
- 【高考真题】海南省2025年高考真题物理(含答案)
- 体育教师自我介绍课件
- 银行员工职业操守课件
- 初中开学第一课心理健康课
- 艺康servsafe培训课件
- TDT1067-2021不动产登记数据整合建库技术规范
- 加气站投诉处理管理制度
评论
0/150
提交评论