




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、正弦、余弦的诱导公式例题讲析例1求下列三角函数的值(1) sin240º;(2);(3) cos(-252º);(4) sin(-)解:(1)sin240º=sin(180º+60º)sin60º=(2) =cos=;(3) cos(-252º)=cos252º= cos(180º+72º)=cos72º=0.3090;(4) sin(-)=sin=sin=sin=说明:本题是诱导公式二、三的直接应用通过本题的求解,使学生在利用公式二、三求三角函数的值方面得到基本的、初步的训练本例中的
2、(3)可使用计算器或查三角函数表例2求下列三角函数的值(1)sin(-119º45);(2)cos;(3)cos(-150º);(4)sin.解:(1)sin(119º45)=sin119º45=sin(180º-60º15)= sin60º15=0.8682(2)cos=cos()=cos=(3)cos(-150º)=cos150º=cos(180º-30º) =cos30º=;(4)sin=sin()=sin=.说明:本题是公式四、五的直接应用,通过本题的求解,使学生在利
3、用公式四、五求三角函数的值方面得到基本的、初步的训练本题中的(1)可使用计算器或查三角函数表1 / 7例3求值:sincossin略解:原式=-sin-cos-sin =-sin-cos+sin =sin+cos+sin =+0.3090=1.3090 .说明:本题考查了诱导公式一、二、三的应用,弧度制与角度制的换算,是一道比例1略难的小综合题利用公式求解时,应注意符号例4求值:sin(-1200º)·cos1290º+cos(-1020º)·sin(-1050º)+tan855º.解:原式sin(120º+3
4、183;360º)cos(210º+3·360º)+cos(300º+2·360º)-sin(330º+2·360º)+tan(135º+2·360º)sin120º·cos210ºcos300º·sin330º+tan135ºsin(180º60º)·cos(180º+30º) cos(360º60º)·sin(36
5、0º-30º)+=sin60º·cos30º+cos60º·sin30ºtan45º=·+·-1=0说明:本题的求解涉及了诱导公式一、二、三、四、五以及同角三角函数的关系与前面各例比较,更具有综合性通过本题的求解训练,可使学生进一步熟练诱导公式在求值中的应用值得指出的是教材中的诱导公式未介绍正切,因此,计算tan135º的值时应先用商数关系把tan135º改写成,再将分子分母分别用诱导公式进而求出tan135º的值例5化简:.略解:原式=1.说明:化简三角
6、函数式是诱导公式的又一应用,应当熟悉这种题型例6化简:解:原式= = = =.说明:本题可视为例5的姐妹题,相比之下,难度略大于例5求解时应注意从所涉及的角中分离出2的整数倍才能利用诱导公式一例7求证:证明:左边= = = = =,右边=,所以,原式成立例8求证证明:左边 tan3右边,所以,原式成立说明:例7和例8是诱导公式及同角三角函数的基本关系式在证明三角恒等式中的又一应用,具有一定的综合性尽管问题是以证明的形式出现的,但其本质是等号左、右两边三角式的化简例9已知求:的值解:已知条件即,又,所以:=说明:本题是在约束条件下三角函数式的求值问题由于给出了角的范围,因此,的三角函数的符号是一
7、定的,求解时既要注意诱导公式本身所涉及的符号,又要注意根据的范围确定三角函数的符号例10已知,求:的值.解:由,得,所以故 =1tan2tan2=1+.说明:本题也是有约束条件的三角函数式的求值问题,但比例9要复杂一些它对于学生熟练诱导公式及同角三角函数关系式的应用提高运算能力等都能起到较好的作用例11已知的值解:因为,所以:=m由于所以于是:=,所以:tan(= .说明:通过观察,获得角与角之间的关系式=-(),为顺利利用诱导公式求cos()的值奠定了基础,这是求解本题的关键,我们应当善于引导学生观察,充分挖掘的隐含条件,努力为解决问题寻找突破口,本题求解中一个鲜明的特点是诱导公式中角的结构要由我们通过对已知式和欲求之式中角的观察分析后自己构造出来,在思维和技能上显然都有较高的要求,给我们全新的感觉,它对于培养学生思维能力、创新意识,训练学生素质有着很好的作用例12已知cos,角的终边在y轴的非负半轴上,求cos的值解:因为角的终边在y轴的非负半轴上,所以:=,于是 2()=从而 所以 =说明:本题求解中,通过对角的终边在y轴的非负半轴上的分析而得的=,还不能马上将未知与已知沟通起来然而,当我们通过观察,分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理影响评估试题及答案
- 如何利用真题提升2025年建造师成绩的试题及答案
- 《物业服务公司》课件
- 田径一级裁判员培训体系与实务
- 《课件探索幸福》
- 农业农村新质生产力
- 《网络平台的运营与管理》课件
- 食堂管理员晋升体系构建与实施路径
- 新护士长心得体会模版
- 毛细血管出血的临床护理
- 科研伦理试题答案及解析
- 2025成都市新劳动合同书范本
- 第二章中国体育产业的发展与现状
- 2025届高三押题信息卷(一)地理及答案
- DB3303T078-2024规模以上工业企业健康评价指标体系
- GB 7718-2025食品安全国家标准预包装食品标签通则
- GB/T 45403-2025数字化供应链成熟度模型
- 咸宁叉车考试题及答案
- 2025春 新人教版美术小学一年级下册走进旧时光
- 腹腔引流管护理查房
- 利用导函数研究极值点偏移(4题型+高分技法+限时提升练)-2025年北京高考数学复习专练(原卷版)
评论
0/150
提交评论