




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.12.6.2数列数列an的通项公式的求法的通项公式的求法 第二章数列普通高中课程标准实验教科书数学必修普通高中课程标准实验教科书数学必修六、差分法六、差分法七、待定系数法七、待定系数法八、倒数法八、倒数法一、观察法(不完全归纳法)一、观察法(不完全归纳法)二、公式法二、公式法三、作差法三、作差法四、累加法(叠加法、迭加法)四、累加法(叠加法、迭加法)五、累乘法(叠乘法、迭乘法)五、累乘法(叠乘法、迭乘法).211:,1,2 ,nnnnaaaana 例例题题 数数列列中中求求的的通通项项公公式式. .11( )( )nnnnaaf naaf n 类类型型:递递推推公公式式为为或或的的形形式式1
2、2nnan 解解:由由已已知知,有有a a累加法(叠加法、迭加法)累加法(叠加法、迭加法) 122nnaan 1224nnaan 2326nnaan.212aa11a 112211()().()nnnnnaaaaaaaa (22)(24)(26).1.2nnn 2(1) (22)2121nnnn2n 当当时时112,32,nnaaan 21111n11a 当当时时,21nann综综上上所所述述.3累乘法(叠乘法、迭乘法)累乘法(叠乘法、迭乘法)1111:,.21nnnnnaaaaan 例例题题 数数列列中中求求的的通通项项公公式式111,1nnnaaan 11( )( )nnnnaaaf nf
3、 na 类类型型:或或的的形形式式111nnanan 解解:由由已已知知,有有 111nnanan .123421123321.nnnnnnnaaaaaaaaaaaaaa1 1.213 2123.135 4nnnnnn 2n 当当时时1111 (11)2n1a ,当当时时1(1)nan n 综综上上所所述述122nnanan 2331nnanan 2113aa 1(1)n n .4差分法差分法1.nnakab 类类型型:递递推推公公式式为为( (其其中中,k k和和b b为为常常数数) )11:2,23,nnnnaaaaa 例例题题 数数列列中中, ,求求的的通通项项公公式式. .123(1)
4、nnna 解解: 数数列列a a 中中,a a1123(2)nnna 时时, 有有a a11(1)(2),2()nnnnaaa 得得a a112nnnnaaa 即即a a2121232 237725aaaa又又1nnaa 是是以以5 5首首项项,2 2为为公公比比的的等等比比数数列列。115 2nnnaa 135 2nnnaa 即即2 215 23nna .5待定系数法待定系数法112,23,:nnnnaaaaa 例例题题 数数列列中中, ,求求的的通通项项公公式式. .123nnna 解解法法二二: 数数列列 a a 中中,a a132(3)nnaa 1323nna 即即a a13235a
5、又又3na 是是以以5 5首首项项,2 2为为公公比比的的等等比比数数列列。135 2nna 15 23nna 111( ).nnnnnakaf nakaba类类型型:通通项项公公式式为为或或的的形形式式( (其其中中,k k和和b b为为常常数数) )111,31nnaaa .611m()k, ,nnnnakabak amb m ( (1 1) )通通项项公公式式为为可可化化为为(其其中中,为为常常数数)111m()k, , ,nnnnnnnakac babk ambb c m (2)(2)通通项项公公式式为为可可化化为为(其其中中,为为常常数数)11123m2()m332(3)nnnnnn
6、aaaamaa 如如:通通项项公公式式为为可可化化为为解解得得即即化化为为1111123m 32(m 3 )m132(3 )nnnnnnnnnnnaaaaaa 如如:通通项项公公式式为为可可化化为为解解得得即即化化为为111m()k, , ,nnnnnnnakac babsk ambsb c m s (3)(3)通通项项公公式式为为+t+t可可化化为为(其其中中,为为常常数数)n111112333+s2(3)m=-1,s3332(33)nnnnnnnnnnaaamamsaa 如如:通通项项公公式式为为可可化化为为解解得得即即化化为为.71111s()k, , ,nnnnnnnakabaaat
7、asab s t ( (4 4) )通通项项公公式式为为可可化化为为(其其中中,为为常常数数)1212:5,2,23(2),nnnnnaaaaanaa 例例题题 数数列列中中, ,求求. .12:23nnnnaaa解解, ,( 22)11113()3(3)nnnnnnnnaaaaaaaa 及及11113313nnnnnnnnaaaaaaaa 即即及及2121257,323 513aaaa 又又113nnnnaaaa 是是以以7 7为为首首项项,3 3为为公公比比的的等等比比数数列列。是是以以- -1 13 3为为首首项项,- -1 1为为公公比比的的等等比比数数列列。11113nnnnnnaa
8、aa =7 3=7 3=-13 (-1)=-13 (-1)1114nnna = = 7 7 3 31 13 3 ( (- -1 1) ).8倒数法倒数法111,32:,.nnnnnaaaaaa 例例题题 数数列列中中, ,求求的的通通项项公公式式1121,2nnnaaaa 1112222.nnnk aak ab 类类型型:通通项项公公式式为为的的形形式式,( (其其中中,k k , ,k k , ,b b 为为常常数数) )1123nnaa 解解:由由已已知知,得得11132(3)nnaa 113213nnaa 即即113 145a又又13na是是以以4 4为为首首项项,2 2为为公公比比的的
9、等等比比数数列列。11134 22nnna 1123nna .9一、观察法(不完全归纳法)一、观察法(不完全归纳法)四、累加法(叠加法、迭加法)四、累加法(叠加法、迭加法)本节小结11( )( )nnnnaaf naaf n 适适用用于于或或的的形形式式11( )( )nnnnaaaf nf na 适适用用于于或或的的形形式式五、累乘法(叠乘法、迭乘法)五、累乘法(叠乘法、迭乘法)二、公式法二、公式法适用于选择、填空题适用于选择、填空题三、作差法三、作差法11(1)(1)nnnSnaSSn .10八、倒数法八、倒数法七、待定系数法七、待定系数法六、差分法六、差分法1.nnakab 适适用用于于
10、( (其其中中,k k和和b b为为常常数数) )11121222.nnnk aak ab 适适用用于于的的形形式式,( (其其中中,k k , ,k k , ,b b , ,b b 为为常常数数) )11m()k, ,nnnnakabak amb m ( (1 1) )通通项项公公式式为为可可化化为为(其其中中,为为常常数数)111m()k, , ,nnnnnnnakac babk ambb c m (2)(2)通通项项公公式式为为可可化化为为(其其中中,为为常常数数)111m()k, , ,nnnnnnnakac babsk ambsb c m s (3)(3)通通项项公公式式为为+t+t可可化化为为(其其中中,为为常常数数)1111s()k, , ,nnnnnnnakabaaat asab s t ( (4 4) )通通项项公公式式为为可可化化为为(其其
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年污水检测试题及答案
- 2025年重庆市车管所事业单位招聘考试模拟试题及答案解析
- 2025年科学道德与学术规范知识竞赛决赛题库(含答案)
- 教学课件题目怎么写模板
- 车辆管理课件
- 车辆理论知识课件
- 制作课件属于教学成果吗
- 金属密封件表面抛光技术考核试卷及答案
- 化纤织物抗泛渍日晒色牢度工艺考核试卷及答案
- 2025年呼吸内科实习生出科考试试题及答案
- 一线班组质量奖申报材料
- 蜜雪冰城加盟合同(2025年版)
- 消毒供应质量控制指标(2024年版)
- ACS合并消化道出血治疗策略
- 数字化转型视角下H公司订单管理优化策略研究
- 精益管理看板
- 汽车产品初期流动管理计划
- 《战略资源稀土》课件
- 《过程审核讲义》课件
- 中医内科学虚劳培训课件
- DB41T 2086-2020 加油加气站内电动汽车充电设施建设技术规范
评论
0/150
提交评论