下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Adaboost 算法1、 Adaboost 算法简介Adaboost 算法是 Freund 和 Schapire 根据在线分配算法提出的,他们详细分析了 Adaboost 算法错误率的上界,以及为了使强分类器达到错误率,算法所需要的最多迭代次数等相关问题。与Boosting 算法不同的是, Adaboost 算法不需要预先知道弱学习算法学习正确率的下限即弱分类器的误差,并且最后得到的强分类器的分类精度依赖于所有弱分类器的分类精度,这样可以深入挖掘弱分类器算法的能力。2、 Adaboost 算法基本原理Adaboost 是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器 ( 弱分类器
2、 ) ,然后把这些弱分类器集合起来,构成一个更强的最终分类器( 强分类器 ) 。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用Adaboost 分类器可以排除一些不必要的训练数据特征,并将关键放在关键的训练数据上面。Adaboost 算法中不同的训练集是通过调整每个样本对应的权重来实现的。开始时,每个样本对应的权重是相同的,即其中n 为样本个数,在此样本分布下训练出一弱分类器。对于分类错误的样本,加
3、大其对应的权重;而对于分类正确的样本,降低其权重,这样分错的样本就被突出出来,从而得到一个新的样本分布。在新的样本分布下,再次对弱分类器进行训练,得到弱分类器。依次类推,经过T 次循环,得到T个弱分类器,把这T 个弱分类器按一定的权重叠加(boost)起来,得到最终想要的强分类器。Adaboost算法的具体步骤如下:设输入的n 个训练样本为: ( x1 , y1 ),( x2 , y2 ), L,( xn , yn ), 其中xi是输入的训练样本,yi0,1 分别表示正样本和负样本,其中正样本数为l,负样本数m 。nlm ,具体步骤如下:初始化每个样本的权重 wi , i D (i ) ;对每
4、个 t 1,L ,T ( T 为弱分类器的个数 ) :把权重归一化为一个概率分布wt , iwt ,inwt , jj1对每个特征f ,训练一个弱分类器h j 计算对应所有特征的弱分类器的加权错误率njwt (xi ) hj ( xi ) yii1选取最佳的弱分类器ht ( 拥有最小错误率) : t按照这个最佳弱分类器,调整权重wt 1,i1 iwt ,i t其中 i0 表示被正确地分类, i1,表示被错误地分类t最后的强分类器为:t1t1Tt ht ( x)1 Tt , t log 1h(x)t 12 t 10otherwiset3、 Adaboost 算法应用随着 Adaboost 算法的
5、发展,目前Adaboost 算法广泛的应用于人脸检测、目标识别等领域,其中有在人脸识别、汽车识别、驾驶员眨眼识别的方面的应用和研究。Discete-Adaboost算法1、给定训练集: x1, y1,L ,xN , yN ,其中 yi1,1,表示 xi 的正确的类别标签, i 1,L , N , g j ( xi) 表示第 i 副图像的第 j个特征值2、训练集上样本的初始分布: D1i1m3、寻找弱分类器 ht ( t 1,L , T )对于每个样本中的第j 个特征,可以得到一个弱分类器 h j ,即可得到阈值j 和方向 p j ,使得jN达到最小,而弱分类器Dt ( xi ) hj (xi)
6、 yii1h j 为:hj ( x)1p j g j( x)p j j1other其中 p j 决定不等式的方向 ,只有1两种情况。4、将所有特征 ( j ) 中挑选出一个具有最小误差t 的弱分类器 ht 。5、对所有的样本权重进行更新Dt 1Dt i expt yiht xiiZtN其中 Zt 是使Dt 1( xi )1得归一化因子。i 16、经过 T 轮训练得到 T 个最优的弱分类器, 此时组成一个强分类器;THfinalxsignt h txt1在 Adaboost 算法的弱学习中,将产生错误率为1 ,2 LT 的弱分类器。如果每个错误率t1,则强分类器的总错误率e 2(1- )2tt一
7、切都从强分类器的错误率开始首先权值更新Dti expty hxexptt yiht ( xi )expyif (xi )Dt 1 ii tiZtmt ZtmZtt其中()( )f xitt ht x然后强分类器的错误率1trainingerror (H )N1N1N1ifyiH ( xi )i 0 else1ifyi f (xi )0i 0 elseexp( yi f ( xi )iDt 1 (i )Ztit使这个错误率快速下降?ZtDt (i ) exp(t yi ht ( xi )iZt 为归一化因子。转化为求 Zt 的最小值了!ZtDt ( xi)exp(t yi ht( xi )iDt
8、( xi )exp(t )Dt(xi )exp(t )i: yiH ( xi )i: yiH ( xi )(1t )exp(t )t exp(t )此时我们用贪心算法求出 Zt 的一个局部最小值对 Zt 中的 t 求导 此时将 t 固定 dZt(1t ) exp(t )t exp( t )d t令导数为零 dZt0 解出d tt1 ln( 1t)2t此时Zt2t (1t )绘制 Zt 关于t 的曲线图从这幅图上我们可以看出,当错误率越小或者越大(只要不在中点处徘徊)的时候Zt 快速收敛到0。越小:说明错误越小的分类器能快速识别出正例。越大 :说明错误越大的分类器也能快速识别出正例。NjDt (
9、xi ) hj ( xi ) yii 1既然最大,只要我把弱分类器取反,这样错误率就是最小,这样还是收敛到 0。从以上的证明,我们知道只要是弱分类器的错误率都取最小,于是我们就能组合得到一个强分类器。接下来我们就找出一个弱分类器 h1 (x) 错误率 1 很小。找 T 个联合起来就得到了强分类器 H final x !怎么找弱分类器?决策树 ID3,C4.5, C5.0ID3生成树用( CIG 类别属性增益法)C4.5生成树用( Gain Ratio增益比率法)修剪树用 (Rule post-pruning规则修剪 )C5.0生成树用 (Gini index基尼指数 )修剪树用 (CRAT回归树修剪 )然后给出 Yoav Freund论文中给出的寻找方法g j ( x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年医药中级职称考试笔试模拟卷
- 金融AI模型的可审计性研究-第1篇
- 2026年经济形势分析与市场预测能力训练题目
- 2026年旅游行业服务礼仪与跨文化沟通能力测试题
- 2026年交通安全法规题库道路安全驾驶常识集
- 2026年工厂安全培训临时电源使用安全试题
- 2026年教育咨询师面试教育理念题库
- 2026中国环丙甲酸甲酯行业盈利态势与投资趋势预测报告
- 中国咖啡饮品市场品牌竞争格局与消费升级趋势报告
- 中国咖啡连锁数字化运营行业会员体系与私域流量构建报告
- 2025版中国经皮冠状动脉介入治疗指南课件
- 2025东航股份综合管理部招聘笔试历年参考题库附带答案详解
- YY/T 1973-2025医用下肢外骨骼机器人
- 解读-2025年版《普通高中课程标准》化学解读
- 食堂餐厅维修项目方案(3篇)
- 医用手术器械讲解
- 肿瘤晚期呼吸困难治疗
- 车间电缆整改方案模板(3篇)
- 徐州村务管理办法
- 冰芯气泡古大气重建-洞察及研究
- 广东省惠州市2026届高三上学期第一次调研考试 历史 含答案
评论
0/150
提交评论