质点运动学典型例题_第1页
质点运动学典型例题_第2页
质点运动学典型例题_第3页
质点运动学典型例题_第4页
质点运动学典型例题_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、质点运动学典型例题1 一质点做抛体运动(忽略空气阻力),如图一所示。求:质点在运动过程中(1)是否变化?(2)是否变化?(3)法向加速度是否变化?(4)轨道何处曲率半径最大?其数值为多少?解:(1)如图一,如果把理解为切向加速度,即,则由图二(a)所示,显然先减小后增大。(2)(3)(4)质点在任一点的曲率半径,质点在运动过程中,式中的速度V,夹角均为变量。故质点在起点和终点处的速度最大()。最大,最小,所以在该处的曲率半径最大。上抛石块的位移和路程一石块以V=4.9m/s的初速度向上抛出,经过2S后,石块的位移_,路程S_.解:如图一,设定石块上抛的初始点为原点,竖直向上为正方向。则其运动方

2、程为2S内的位移为,负号表明所求位移的方向为竖直向下,即物体在2S内改变了运动方向。先求物体到达最高点的时刻,即,则总路程求解某一位置的速度质点沿x轴正向运动,其加速度随位置变化的关系为,如果在x=0处,其速度为,那么,在x=3m处的速度为多少?解:因为宇宙速度 众所周知,人造地球卫星和人造行星是人类认识宇宙的重大发展但怎样才能把物体抛向天空,使之成为人造卫星或人造行星呢:)这取决于抛体的初速度。有趣的是,在1687年,牛顿出版的第一部著作自然哲学的数学原理中,有一幅插图。这幅图指出抛体的运动轨迹取决于抛体的初速度,它明确地指出发射人造地球卫星的可能性,当然这种可能性在当时只是理论上的 270

3、年后,人类才把理论上的人造卫星变成了现实 1人造地球卫星 第一宇宙速度没地球的半径为、质量为。在地面上有一质量为m的抛体,以初速竖直向上发射,到达距地面高度为h时,以速度V绕地球作匀速率圆周运动,如略去大气对抛体的阻力,抛体最小应具有多大的速度才能成为地球卫星?如把抛体与地球作为一个系统,由于没有外力作用在这个系统上,系统的机械能守恒于是, (1)上式可写成 (2)由牛顿第二定律和万有引力定律,有 (3)上式可写成 (4) 将(4)式代入(2),得 已知地球表面附近的重力加速度 ,故上式为上式给出了人造卫星由地面发射的速度V1与其所应达到的高度之间的关系卫星发射速度越大,所能达到的高度h就越大

4、由上式可以看出,对于地球表面附近的人造地球卫星有,故上式可简化为其中,可得 这就是在地面上发射人造地球卫星所需达到的最小速度,通常叫做第一宇宙速度在地球表面附近的卫星(RE)h),由式(2)有.故常说,人造地球卫星环绕地球的最小速度亦为把式(3)代入式(1),有上式表明,人造地球卫星的机械能是小于零的,即E0 2人造行星 第二宇宙速度如果抛体的发射速度继续增大,致使抛体与地球之间的距离增加到趋于无限远时,即r=,这时可认为抛体已脱离地球引力的作用范围抛体可成为太阳系的人造行星在这种情况下,抛体在地球引力作用下的引力势能为零,即、若此时抛体的动能也为零,即,那么抛体在距地球无限远处的总机械能这就

5、是说,在抛体从地面飞行到刚脱离地球引力作用的过程中,抛体以自己的动能克服引力而作功,从而把动能转变为引力势能由于略去阻力以及其他星体的作用力所作的功,故机械能应守恒,额中V2是使抛体脱离地球引力作用范围,在地面发射时抛体所必须具有的最小发射速度这个速度又叫第二宇宙速度由上式可得第二宇宙速度为 从上述关于第二宇宙速度的讨论中可以看出,要使抛体脱离地球引力作用,只要 抛体具有不小于的发射速度就行,而这时可以不考虑发射速度的方向,就能得到所要求的数值。这是用能量观点来讨论这类问题最显著的一个优点 应当指出,若发射速度大于第二宇宙速医,这时抛体的机械能大于零即E0。理论计算表明,这时抛体在太阳引力作用

6、下绕太阳作椭圆轨道运动成为人造行星。 图绘出了在地面上水平发射的抛体,其能量与以地球为参考系的运动轨迹之间的关系当E0时,抛体的轨迹为椭圆(包括圆);当E0时为双曲线;当E=0时,为抛物线 3 飞出太阳系 第三宇宙速度 上面讲述了从地球表面发射的抛体达到或超过第二宇宙速度以后,它将外绕太阳成为太阳系中一颗人造行星。如果我们继续增加从地球表面发射抛体的速度,并使之能脱离太阳引力的束缚而飞出太阳系,这个速度称之为第三宇宙速度,用来表示。 显然,要使抛体脱离太阳系的束缚,必须先脱离地球引力的束缚,然后再脱离太阳引力的束缚。这就是说,抛体脱离地球引力束缚后还要具有足够大的动能实现飞出太阳系的目的 首先

7、讨论抛体脱离地球引力场的情形我们把地球和抛体作为一个系统,并取地球为参考系。设从地球表面发射一个速度为的抛体,其动能为,引力势能为,当抛体脱离地球引力的束缚后。它相村地球的速度为,按机械能守恒定律,有 (1)为求,取太阳为参考系,此抛体距太阳的距离为RS,相对太阳的速度为。则抛体相对太阳的速度应当等于抛体相对地球的速度与地球相对太阳的速度VE之和,即如方向相同,则抛体相对太阳的速度最大,有 (2) 此后抛体在太阳的引力作用下飞行,其引力势能为,动能为;为太阳的质量,故抛体要脱离太阳引力作用,其机械能至少是 (3) (4)把式(4)代入式(2),有 (5)如设地球绕太阳的运动轨道近似为一圆,那么

8、由于抛体与地球的运动方向相同亚都只受太阳引力的作用,故可以认为此时抛体至太阳的距离,即是地球轨道圆的半径。于是由牛顿第二定律有即得把上式代入(5)式,得将,则,将其代入(1),可得其中,所以第三宇宙速度为 自1957年世界上第一颗人造地球卫星上天以来,1961年前苏联宇航员加加林乘坐宇宙飞船环绕地球一周人类首次进入了太空1969年7月美国阿波罗11号宇宙飞船首次实现载人登月1976年美国海盗1号宇宙飞船成功登上火星,发回5万多张照片和大量探测数据。1997年7月4日,美国“火星探路者”无人飞船又在火星上着陆,并以火星车在火星表面采集样品拍摄照片表明,在几十亿年以前火星上非常可能发生过特大洪水。

9、然而火星上是否有过液态水,甚至有过生命,仍然是一个有待进一步考察研究的问题1983年美国先驱者10号宇宙飞船超过太阳引力的束缚成为了飞出太阳系的第一个人造天体,人类完全有信心指望载人火星飞行、建造适宜人类居住的太空城等愿望终能成为现实。运用矢量运算求解平均速度如图一所示,雷达站探测飞机的方位,在某一时刻测的飞机离该站连线与水平方向的夹角;经过0.8S后,测得飞机离该站,连线与水平方向的夹角.求:飞机在这段时间内的平均速度。解:取坐标系如图二所示,两次测的飞机的位矢分别为根据平均速度的定义,在0.8S内飞机的平均速度为(m/s)故平均速度的大小为平均速度的方向与x轴的夹角为求解杆顶影子的速度地面

10、上垂直竖立一根高20m的旗杆,已知正午时分太阳在旗杆的正上方,如图一,问:在下午2时整,杆顶在地面上影子的速度为多少?在什么时刻杆的影子将伸展至20m. 解:地球自西向东自转相当于太阳自东向西绕地球转动,地球自转一周为,故太阳绕地球转动一周也是。这样,太阳绕地球转动的角速度为如从正午时分开始计时,则杆的影长为下午2时正杆顶在地面上的影子的速度大小为当S=h时,则即所求时刻为下午三时整。求解椭圆规上某一点的速度和加速度如图一所示,椭圆规的AB,A、B两点分别沿Oy槽,Ox槽移动,试证明杆上一点C的轨迹为一椭圆。又设杆上A点以匀速运动,求:C点的速度和加速度。解:设某一时刻AB杆与x轴的夹角为q,

11、则C点的坐标为,在以上两式中消去q,得因而C点的轨迹为一椭圆。C点的速度分量为(下面我们再根据A点的速度求出)因为,所以,按照题意,,得到将上式代入式,得到故,C点的速度为将和对时间求导数,得C点的加速度的分量为下面我们根据A点的加速度求解。由于杆的A端作匀速直线运动,或者,因此=0则由此,得,将上式代入C点的加速度的分量的表达式,得到则c点的合加速度的大小为求解复合振子的折合质量如图一,劲度系数为K的轻弹簧竖直悬挂,下端与一质量为M的圆柱体(不能转动)相连,不可伸长的细线绕过圆柱体,两端分别系有质量为和的重物。细绳与圆柱体之间的摩擦力可以忽略不计。试求:当两重物同时运动时,圆柱体的振动周期。

12、解:取圆柱体为研究对象,它的受力如图二所示,其中kx为弹簧对它作用的向上的弹力,Mg为其自身重力,两边的T是两边绳对它的拉力,圆柱体在这几个力的共同作用下运动。取弹簧为原长时,圆柱体的中心位置为坐标原点,竖直向下为x轴,当圆柱体中心位于任一位置x时,受向上的弹性力,向下的重力Mg以及两绳的拉力2T,有牛顿第二定律,对于圆柱体,有 (1)上式中a为此刻圆柱体的加速度,又设此刻物块相对于圆柱体的加速度为(设其方向向下),则此刻物块相对于圆柱体的加速度为,故得此刻和两物块的加速度和分别为 (2) (3)同样,根据牛顿第二定律,对于物块和,可以分别列方程为 (4) (5)由(2)(3)(4)(5)式,解得 (6)(6)代入(1),有解,得圆柱体的加速度为引入一个新的变量,令则前式变为由上式可见,对于新的变量来说,圆柱体将作简谐振动。其振动的角频率为因为x与只差一个常量,故对于x来说,圆柱体也是做简谐振动,其振动的角频率也就是上面的w,故得圆柱体作简谐振动的周期为故其等效质量为.求解以等效单摆的振动周期设想有一单摆,其摆长L与地球半径R相等,试求:此单摆在地球表面附近振动的周期T为多少?已知地球半径为6370km.分析:摆球在地面附近运动,可以认为它所受的地球引力的大小不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论