




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教新课标15.4 15.4 因式分解因式分解 一、新课引入一、新课引入29991= (999+1)2 = 106完全平方公式完全平方公式逆用逆用 就像平方差公式一样,就像平方差公式一样,完全平方完全平方公式公式也可以也可以逆用逆用,从而进行一些简便,从而进行一些简便计算与因式分解。计算与因式分解。即:即:2222bababa完全平方式的特点:完全平方式的特点: 1、必须是、必须是三项式三项式(或可以看成三项的)(或可以看成三项的) 2、有两个、有两个同号同号的平方项的平方项 3、有一个乘积项(等于平方项底数的、有一个乘积项(等于平方项底数的2倍倍) 简记口诀:简记口诀: 首平方,尾平方,首尾
2、两倍在中央。首平方,尾平方,首尾两倍在中央。222baba二、完全平方式二、完全平方式1、回答:下列各式是不是回答:下列各式是不是完全平方式完全平方式 22222222222122234446154624aba bx yxyxx yyaa bbxxaa bb是是是是是是否否是是否否2222)2(2244yyxxyxyxabab2+二、完全平方式二、完全平方式 能否利用完全平方公式分解因式,一是要能否利用完全平方公式分解因式,一是要看多项式是否为完全平方式,二是要找出多项看多项式是否为完全平方式,二是要找出多项式中的式中的“a”“a”与与“b”“b”222baba2.填写下表填写下表962xx1
3、442yy241a4122xx229124xxyy9)2 ( 6)2 (2yxyx2)(ba2)(ba22332xx2211)2 (2)2 (yy2233)2 (2)2 (yxyx2)3( x2) 12(y2)32( yx是是是是不是不是是是不是不是不是不是a a表示:表示:x xb b表示:表示:3 3a a表示:表示:2y2yb b表示:表示:1 1a a表示:表示:2x+y2x+yb b表示:表示:3 33、请补上一项,使下列多项式成、请补上一项,使下列多项式成为为完全平方式完全平方式 222222224221_2 49_3_414_452_xyabxyabxx y2xy12ab4xya
4、b4y例,分解因式:例,分解因式:(1) 16x2+24x+9分析:在分析:在(1)中,中,16x2=(4x)2,9=32,24x=24x3,所以所以16x2+24x+9是一个完全平方式,即是一个完全平方式,即16x2+24x+9= (4x)2+ 24x3 +32a22abb2+解解:(1)16x2+24x+9=(4x)2+24x3+32=(4x+3)2.三、新知识或新方法运用三、新知识或新方法运用2)(ba2)34(x例例: 分解因式:分解因式:(2) x2+4xy4y2.解:解:(2) x2+4xy-4y2 = -(x2-4xy+4y2) = -x2-2x2y+(2y)2 = - (x-2
5、y)2 三、新知识或新方法运用三、新知识或新方法运用例例: 分解因式分解因式: (1) 3ax2+6axy+3ay2; (2) (a+b)2-12(a+b)+36.分析分析:在(:在(1)中有公因式)中有公因式3a,应先,应先提出公因式,再进一步分解。提出公因式,再进一步分解。解解:(1)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2(2)(a+b)2-12(a+b)+36=(a+b)2-2(a+b)6+62=(a+b-6)2.三、新知识或新方法运用三、新知识或新方法运用1:如何用符号表示完全平方公式?:如何用符号表示完全平方公式?a2+2ab+b2=(a+b)2,
6、a2-2ab+b2=(a-b)22:完全平方公式的结构特点是什么?:完全平方公式的结构特点是什么?四、小结四、小结完全平方式的特点:完全平方式的特点: 1、必须是、必须是三项式三项式(或可以看成三项的)(或可以看成三项的) 2、有两个、有两个同号同号的平方项的平方项 3、有一个乘积项(等于平方项底数的、有一个乘积项(等于平方项底数的2倍倍)简记口诀:简记口诀: 首平方,尾平方,首尾两倍在中央。首平方,尾平方,首尾两倍在中央。 应用应用练习练习1.下列多项式是不是完全平方式?为下列多项式是不是完全平方式?为什么什么 (1) a24a+4; (2) 1+4a2; (3) 4b2+4b1 ; (4) a2+ab+b2.2.分解因式:分解因式: (1) x2+12x+36; (2) 2xyx2y2; (3) a2+2a+1; (4) 4x24x+1; (5)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB 7300.308-2025饲料添加剂第3部分:矿物元素及其络(螯)合物苏氨酸锌螯合物
- 项目四运营抖音短视频李丽泸州97课件
- 硅酮胶采购2025年
- 2020-2025年中级注册安全工程师之安全生产法及相关法律知识全真模拟考试试卷A卷含答案
- 二零二五年度智能家居系统集成房屋修缮合同
- 二零二五年度高级会计师职业责任担保合同
- 2025年度民事违约起诉书:涉及智慧城市建设的合同纠纷解决
- 2025版车库购置与产权登记服务合同范本
- 二零二五年度#筑梦的舞者#舞蹈培训机构品牌合作合同
- 二零二五年新型餐厅部分股权转让与餐饮品牌建设协议
- 现场采样人员管理制度
- 三聚氰胺表面板行业深度研究分析报告(2024-2030版)
- 大概念教学课件
- 2025年中国土状石墨原矿项目投资可行性研究报告
- 基于量子计算的IoT数据预处理与优化方法-洞察阐释
- 商圈周边交通疏导措施及优化建议
- 新生儿高胆红素血症诊治指南(2025)解读
- 《益生元与肠道健康》课件
- 电竞选手经纪合同协议
- 2025年中学教师资格考试《综合素质》考前押题密卷(含答案)实战演练题目
- 迷宫设计思路流程图
评论
0/150
提交评论