相似三角形的性质教学设计_第1页
相似三角形的性质教学设计_第2页
相似三角形的性质教学设计_第3页
相似三角形的性质教学设计_第4页
相似三角形的性质教学设计_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、相似三角形的性质【教学目标】1初步掌握相似三角形的周长比、面积比与相似比的关系以及关于它们之间关系的两条定理的证明方法,并会运用定理进行有关简单的计算。2在动手参与解决身边实际问题的过程中,增强主动探索、发现数学知识的意识,提高观察、归纳能力,应用数学知识解决生活中实际问题的能力。3在学习过程中,进一步改善独立思考、合作学习、自主评价等学习品质。【教学重难点】重点:相似三角形的周长比、面积比与相似比的关系的探究与证明。难点:相似三角形的周长比、面积比与相似比的关系的应用。【教学过程】一、设计龟免赛跑故事导入新课乌龟场地42兔子场地 1有一只极速乌龟和骄傲的兔子在规定的两块相似四边形的场地上进行

2、比赛,谁先跑完一圈谁为胜,已知:免子的速度是乌龟的4倍,结果乌龟跑完一圈只用了一个小时,兔子说,我睡上半个小时再跑,也能比你先跑完一圈;你认为兔子的说的话对吗?你能猜到比赛的最后结果吗?(以“龟兔赛跑”精典故事开头,引起同学对这堂课的兴趣。)二、自主探究,发现新知1分组猜想探究活动, 完成下列实验报告单 相似比周长比面积比从以上表中可以看出,当相似比等于K时,周长比等于 ,面积比等于 。 由此可以猜想:相似三角形的周长比等于 ,面积比等于 。 从以上表中可以看出,当相似比等于K时,面积比等于 ,周长比等于 。 由此可以猜想:相似三角形的面积比等于 ,周长比于 。 要求:在方格纸(方格边长为1个

3、单位)上,画出一个与已知ABC相似, 但相似比不为1的格点(每小组至少画两种情况); 分别计算:ABC与的相似比,周长比及面积比,然后填表; 小组分工:目的:通过实验发现相似三角形的周长比、面积比与相似比的关系相似三角形的周长与面积实验报告单(学生经历动手实验 - 观察思考归纳发现的学习过程,分别总结两个相似三角形的周长比与相似比的关系,面积比与相似比的关系。注重学生动手实验、探索过程,并利用小组合作方式,培养学生的合作意识。)猜测得到命题:相似三角形的周长比等于相似比。相似三角形的面积比等于相似比的平方。2验证猜想,得出结论(小组讨论)探究:如果两个三角形相似,它们的周长比是否等于相似比呢?

4、两个相似多边形呢? 如果ABCA'B'C',相似比为k,那么AB=kAB,BC=kBC,CA=kCA可以得到 相似三角形周长的比等于相似比类似的方法还可以得出 相似多边形周长的比等于相似延伸问题:探究:(1) 如图272-11(1),ABC A'B'C',相似比为k1 ,它们的面积比呢? 图272-11(1)分析:如图272-11,分别作出ABC和 A'B'C'的高AD和A'D'。ADB=A'D'B'=900又B=B'ABDA'B'D'(在此得出相似三

5、角形对应高的比等于相似比) = 可以得到:相似三角形面积比等于相似比的平方相似三角形对应中线的比,对应角平分线的比都等于相似比吗?(2)如图图272-11(2),四边形ABCD相似于四边形A'B'C'D',相似比为k2,它们的面积比是多少? 图272-11(2) k22 k22相似多边形面积比等于相似比的平方三、运用性质,熟悉新知1已知两个三角形相似,根据下列数据填表:相似比21/3周长比0.0110面积比100000.00012实际问题的解决在福州中环线的建设施工中,曾遇到这样一个实际问题:由于马路拓宽,有一个面积是100平方米、周长80米的三角形的绿化地被削

6、去了一个角,变成了一块梯形绿地,原绿化地的一边AB的长由原来的20米缩短成12米(如图所示)。为了保证福州的绿化建设,市政府规定:因为种种原因而失去的绿地面积必须等面积补回。这样就引出了一个问题:这块失去的面积到底有多大?它的周长是多少?你能够将上面生活中的实际问题转化为数学问题吗? 实际问题:如图,已知,在中,DEBC,AB=20m,BD=12m, 的周长为80m,面积为100m²,求:的周长和面积。(通过探索、论证,到运用解决实际问题,一方面学生摸索到了从已知到未知的研究方法,另一方面又感受到了数学来源于生活又服务于生活。)3引申分别连接CD和BE交于点G. 求:(1)(2),(

7、3),。(对引例的变式是培养学生多层次、多角度思维能力的一种较好形式。复杂图形中观察基本图形对学生来说有一定的难度,教师借助于多媒体的力量,采用图形的闪烁,色彩的变化等手段,突出基本图形,突破难点。)四、小结反思, 自主评价1 知识技能部分的小结:相似三角形的周长比、面积比与相似比的关系;两条有关定理的证明思路与证明方法;定理的运用(进行有关简单的计算)。2自主评价:如:对网格图上的两个格点三角形相似的认识;对运用定理解决问题的注意点的反思性总结;对自己及同伴在课堂上数学学习表现的评价;提出自己的困惑与不解,或进行质疑等。3 教师根据学生自主评价情况作适当的点评。【作业布置】1. 选做题:(1

8、)对引例继续探究过点E作EF/AB,EF交BC于点F,其他条件不变,则的面积等于多少?平行四边形DBFE面积为多少?(作业的布置,帮助学生对知识的保持和迁移,尊重学生的个体差异满足多样化的学习需要,使不同层次的学生有不同的收获。)【课后反思】本节课是论证几何中“相似形”的重点内容之一,是在学会相似三角形的定义及判定的基础上,进一步研究相似三角形的性质,以完成对相似三角形的全面研究。它是全等三角形的拓展,也是解决有关实际问题的重要工具。本节课的引入,是以“龟兔赛跑”精典故事开头,引起同学对这堂课的兴趣。整个探究活动部分,主要是对网格图上的格点三角形进行研究,选择网格图上的格点三角形进行研究,主要

9、考虑网格有支架作用,便于学生进行边长、周长、面积的计算。另外对于网格图,学生在相似三角形的判定中已有接触,比较熟悉。这个部分注重学生动手实验、探索过程,并利用小组合作方式,培养学生的合作意识。课本例题进行“再创造” ,以福州的中环线建设为背景,提出数学问题。这样的设计,既可以调动学生的学习热情与积极性,又可以使学生认识到,现实生活中处处有数学,提高学生应用数学的意识。在得出定理后,及时进行思维训练。通过探索、论证,到运用解决实际问题,一方面学生摸索到了从已知到未知的研究方法,另一方面又感受到了数学来源于生活又服务于生活。对引例的变式是培养学生多层次、多角度思维能力的一种较好形式。小结部分,拟让学生小结反思与自主评价。这样做,有利于学生巩固刚获

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论