相似三角形-模型分析与典型例题讲解大全_第1页
相似三角形-模型分析与典型例题讲解大全_第2页
相似三角形-模型分析与典型例题讲解大全_第3页
相似三角形-模型分析与典型例题讲解大全_第4页
相似三角形-模型分析与典型例题讲解大全_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一部分相似三角形模型分析大全、相似三角形判定的基本模型认识(一)A字型、反AA:一:B2-'C(平行)(二)8字型、反8:力 ;X(平行)(二)母子型 A垂直(四)一线三等角型: 三等角型相似三,卜(五)一线二直角型: 1- 二V字型(斜A字型)A 一 BC(/、平行) 字型A) (蝴蝶型) (/、平行)A 二 BC不垂直角形是以等腰三角形(等腰梯形)或者等边三角形为背景4AA A精选文档(六)双垂型:A第二部分相似三角形典型例题讲解母子型相似三角形例1:如图,梯形 ABCD中,AD/BC,对角线 AC、BD交于点O, BE/CD交CA延长线于E.2求证:OC5.已知:如图,在 Rt

2、ABC中,/ C=90° , BC=2, AC=4, P是斜边AB上的一个动点,PDXAB,交边 AC于点D (点D与点A、C都不重合),E是射线DC上一点,且/ EPD=ZA.设A、P两点的距离为x, BEP的面积为y.(1)求证:AE=2PE;(2)求y关于x的函数解析式,并写出它的定义域;(3)当 BEP与 ABC相似时,求 BEP的面积. OA OE .例2:已知:如图, ABC中,点E在中线AD上, DEB ABC .2求证:(1) DB DE DA;(2) DCE DAC .例 3:已知:如图,等腰 ABC 中,AB = AC, ADBC于 D, CG/AB,BG分别交A

3、D、AC于E、F.求证:BE2 EF EG .相关练习:2、已知:AD是RtA ABC中/ A的平分线,/ C=90 ° , EF是AD的垂直平分线交 AD于M, EF、BC的 延长线交于一点 N。求证:(1) AMEsNMD;(2)ND =NC - NB3、已知:如图,在 ABC中,/ ACB=90求证:EB - DF=AE - DBCD LAB 于 D, E 是 AC 上一点,CFBE 于 F。4.在 ABC中,AB=AC ,高AD与BE交于H, EF BC ,垂足为F,延长AD到G,使DG=EF , M是AH的中求证: GBM 902双垂型1、如图,在 ABC 中,/ A=60

4、° , BD、CE 分别是 AC、AB 上的高,求证:(1) AABDA ACE ; (2) ADE s' ABC; (3)BC=2ED2、如图,已知锐角 ABC, AD、CE分别是BC、AB边上的高, ABC和 BDE的面积分别是 27和3, DE=6 J2,求:点B到直线AC的距离。共享型相似三角形1、AABC是等边三角形,D、B、C、E在一条直线上,/DAE= 120 ,已知BD=1 , CE=3 ,,求等边三角形 的边长.2、已知:如图,在 RtMBC 中,AB=AC, / DAE =45求证:(1) ABEsACD;(2) BC2 2BE CD .A一线三等角型相似

5、三角形例1:如图,等边 ABC中,边长为6, D是BC上动点,/ EDF=60(1)求证: BDEsCFD(2)当 BD=1 , FC=3 时,求 BE例2: (1)在 ABC中,AB AC 5, BC 8,点P、Q分别在射线CB、AC上(点P不与点C、点B重合),且保持 APQ ABC .若点P在线段CB上(如图),且BP 6,求线段CQ的长;若BP x, CQ y ,求y与x之间的函数关系式,并写出函数的定义域;(2)正方形ABCD的边长为5 (如下图),点P、Q分别在直线CB、DC上(点P不与点C、点B重合),且保持 APQ 90 .当CQ 1时,求出线段 BP的长.例3:已知在梯形 A

6、BCD中,AD / BC, ADBC,且 AD=5, AB=DC=2.(1)如图8, P为AD上的一点,满足/ BPC= /A.求证; ABPA DPC求AP的长.(2)如果点P在AD边上移动(点P与点A、D不重合),且满足/ BPE=/A, PE交直线BC于点E,同时交直线DC于点Q,那么当点Q在线段DC的延长线上时,设AP=x, CQ=y,求y关于x的函数解析式,并写出函数的定义域;当CE=1时,写出AP的长.例4:如图,在梯形 ABCD中,AD / BC , AB CD BC 6, AD 3 .点M为边BC的中点,以M为顶点作 EMF B ,射线ME交腰AB于点E ,射线MF交腰CD于点

7、F ,联结EF .(1)求证: MEF BEM ;(2)若 BEM是以BM为腰的等腰三角形,求 EF的长;(3)若EF CD ,求BE的长.相关练习:1、如图,在 ABC中,AB AC 8, BC 10, D是BC边上的一个动点,点 E在AC边上,且ADE C .求证: ABDA DCE;(2)如果BD x, AE y ,求y与x的函数解析式,并写出自变量x的定义域;ADE是什么三角形,并说明理由.(3)当点D是BC的中点时,试说明2、如图,已知在 ABC中,AB=AC=6, BC=5, D 是 AB 上一点,BD=2, E 是 BC 上一动点,联结 DE ,(1)求证: DBEAECF;(2

8、)当F是线段AC中点时,求线段 BE的长;并作 DEF B,射线EF交线段AC于F.(3)联结DF,如果 DEF与4DBE相似,求FC的长.BE C3、已知在梯形 ABCD 中,AD / BC, ADvBC,且 BC =6, AB=DC=4,点 E 是 AB 的中点.(1)如图,P为BC上的一点,且 BP=2.求证: BEPs CPD;(2)如果点P在BC边上移动(点 P与点B、C不重合),且满足/ EPF=/C, PF交直线CD于点F, 同时交直线AD于点M,那么当点F在线段CD的延长线上时,设 BP= x, DF= y,求y关于x的函数解析式,并写出函数的定域;9当Sdmf 9Sbep时,

9、求BP的长.4(备用图)4、如图,已知边长为3的等边 ABC点F在边BC上,CF 1 ,点E是射线BA上一动点,以线段EF为边向右侧作等边 efg,直线EG, FG交直线AC于点M , N ,(1)写出图中与 BEF相似的三角形;(2)证明其中一对三角形相似;(3)设BEx,MN y,求丫与乂之间的函数关系式,并写出自变量x的取值范围;(4)若AE1,试求GMN的面积.C备用图一线三直角型相似三角形例1、已知矩形ABCD中,CD=2 ,AD=3,点P是AD上的一个动点,且和点A,D不重合,过点P作PE CP , 交边AB于点E,设PD x, AE y ,求y关于x的函数关系式,并写出 x的取值

10、范围。oAO 2. 一 .例2、在 ABC中, C 90 ,AC 4, BC 3,0是AB上的一点,且 一,点P是AC上的一个AB 5动点,PQ 0P交线段BC于点Q,(不与点B,C重合),设AP x,CQ y ,试求y关于x的函数关系,并写出定义域。【练习1】o3在直角 ABC中,C 90 ,AB 5, tan B ,点D是BC的中点,点E是AB边上的动点,DF DE 4交射线AC于点F(1)、求AC和BC的长(2)、当EFBC时,求BE的长。(3)、连结EF,当 DEF和 ABC相似时,求BE的长。【练习2】在直角三角形 ABC中, C 90o, AB BC, D是AB边上的一点,E是在A

11、C边上的一个动点,(与A,C不重合),DF DE, DF与射线BC相交于点F.(1)、当点D是边AB的中点时,求证: DE DF、当处m,求店的值DBDFx,BF y,求y关于x的函数关系式,并写出定义域AD 1(3)、当 AC BC 6,,设 AEDB 2E为AB边上的一个动点,作 DEF 90 ,EF交射线BC于点F .设BE x, BED的面积为y .(1)求y关于x的函数关系式,并写出自变量 x的取值范围;(2)如果以B、E、F为顶点的三角形与 BED相似,求 BED的面积.【练习5】、(2009年黄浦一模25)DAB 900, P 是月BC 上4如图,在梯形 ABCD 中,AB CD , AB 2,AD 4,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论