数字图像处理冈萨雷斯N11PPT课件_第1页
数字图像处理冈萨雷斯N11PPT课件_第2页
数字图像处理冈萨雷斯N11PPT课件_第3页
数字图像处理冈萨雷斯N11PPT课件_第4页
数字图像处理冈萨雷斯N11PPT课件_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Image Enhancement in the Frequency DomainReview of Frequency Domain MethodsLowpass FilteringHighpass FilteringHomomorphic FilteringFrequency Filtering no. 1 linear filtering is more intuitive in the frequency domain. small spatial masks are used more often, in practice.understanding of the frequency

2、 domain concepts is essential to the solutions of many problems not easily addressed by spatial techniques. 第1页/共35页Review of Frequency Domain MethodsFrequency Filtering no. 2The foundation of frequency domain techniques is the convolution theorem,),(*),(),(yxfyxhyxg),(),(),(vuFvuHvuGG, H, F : the F

3、ourier transforms of g, h and f, respectively.H(u,v) : called the transfer function.),(),(),(1vuFvuHyxgg(x,y) exhibits some highlighted feature of f(x,y).第2页/共35页Review of Frequency Domain Methods(cont.1)Frequency Filtering no. 3第3页/共35页Review of Frequency Domain Methods(cont.2)Frequency Filtering n

4、o. 4第4页/共35页Review of Frequency Domain Methods(cont.3)Frequency Filtering no. 5第5页/共35页Review of Frequency Domain Methods(cont.4)Frequency Filtering no. 6第6页/共35页Review of Frequency Domain Methods(cont.5)Frequency Filtering no. 7Frequency domain for experimentSpatial domain for implementation第7页/共35

5、页Lowpass FilteringFrequency Filtering no. 8Ideal Lowpass Filter (ILPF)Butterworth filter (BLPF)Gaussion filter (GLPF)第8页/共35页Ideal Lowpass Filter (ILPF)Frequency Filtering no. 9Blurring is achieved in frequency domain by attenuating a specified range of high-frequency components. Thus, ideal filter

6、(ILPF) is,),( if0),( if1),(00DvuDDvuDvuH2/122)(),(vuvuDNo attenuation insider a circle, but all frequency outside the circle is attenuated. Radically symmetric.第9页/共35页Performance measurementFrequency Filtering no. 10Compare the power by the same cutoff frequency loci. The total power,),(1010MuNvTvu

7、PPTuvPvuP00),(100第10页/共35页Examples of ILPFBlurring & Ringing:Radius increase, less high-frequency removed, less blurring. However, even with 3.6% off, the blurring is still characterized by severe ringingFrequency Filtering no. 11第11页/共35页Illustration of blurring and ringing properties of ILPFFr

8、equency Filtering no. 12Frequency/SpaceHow implement?第12页/共35页Butterworth filter (BLPF)The transfer function of the BLPF of order n and with cutoff frequency D0,nDvuDvuH20/ ),(11),(Frequency Filtering no. 13第13页/共35页Examples of ILPF and BLPF(a)Original image 12-gray-level(b)ILPF(c) Order 1BLPF Frequ

9、ency Filtering no. 14第14页/共35页Spatial representations of BLPFsFrequency Filtering no. 15第15页/共35页Gaussian filter (GLPF)The transfer function of the GLPF222/ ),(),(vuDevuHBoth Gaussian, No ringing phenomenaFrequency Filtering no. 16第16页/共35页Examples of BLPF and GLPFFrequency Filtering no. 17?第17页/共35

10、页Examples of GLPFFrequency Filtering no. 18?第18页/共35页Examples of GLPFFrequency Filtering no. 19?第19页/共35页Examples of GLPFFrequency Filtering no. 20Remain the most significant feature第20页/共35页Highpass FilteringIdeal filter (IHPF) ,),( if1),( if0),(00DvuDDvuDvuHButterworth filter (BHPF) nvuDDvuH20),(/

11、11),(Gaussion filter (BHPF) 222/ ),(1),(vuDevuHFrequency Filtering no. 21H=1-L第21页/共35页Highpass Filtering(cont)Frequency Filtering no. 22第22页/共35页Spatial representations of IHPF, BHPF, GHPFFrequency Filtering no. 23第23页/共35页Results of IHPFsFrequency Filtering no. 24第24页/共35页Results of BHPFsFrequency

12、 Filtering no. 25第25页/共35页Results of GHPFsFrequency Filtering no. 26第26页/共35页Frequency & Spatial representations of Laplacian filter),(),(),( : tenhancemen Image),()(),(),(22222yxfyxfyxgvuFvuyxfyxfFrequency Filtering no. 27第27页/共35页Results of High-boost filter),(),(),(2yxfyxfyxgFrequency Filteri

13、ng no. 28第28页/共35页Results of High-boost filter),() 1(),(),(1),(),(),() 1(),(),(),(),(vuHAvuHvuHvuHyxfyxfAyxfyxfyxfyxfhphblphphphblphpFrequency Filtering no. 29第29页/共35页Results of High-boost filterFrequency Filtering no. 30第30页/共35页Homomorphing FilteringThe illumination-reflectance modelSuppose),(),(

14、),(yxryxiyxf),(ln),(ln),(ln),(yxryxiyxfyxzThen, Fourier transform),(),(),(vuRvuIvuZProcess by filter function H(u,v), yields),(),(),(),(),(),(),(vuRvuHvuIvuHvuZvuHvuSIn spatial domain),( ),( ),(yxryxiyxsThe desired enhanced image),( exp),( exp),(exp),(yxryxiyxsyxgFrequency Filtering no. 31第31页/共35页Homomorphing Filtering(cont)Illuminationlow frequency, reflectance high frequency.Choose H(u,v) affects low and high component differently.Frequency Filtering no. 32第32页/共35页Homomorphing Fil

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论