八年级变量与函数 - 试题_第1页
八年级变量与函数 - 试题_第2页
八年级变量与函数 - 试题_第3页
八年级变量与函数 - 试题_第4页
八年级变量与函数 - 试题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、变量与函数【知识体系】1. 常量与变量 常量:在一个变化过程中永远都不发生改变的量叫常量 变量:在一个变化过程中发生改变的量叫变量 例如:一辆火车从甲地开往乙地,火车每小时走60km这一过程中,甲乙两 地的路程与火车的速度都始终保持不变,是常量,而火车所走的路程与火车所行 驶的时间总在发生变化,它们是变量2. 函数的意义 一般地,设在一个变化过程中有两个变量x和y,如果对于变量x的每一个值,变量y都有唯一值与它对应,我们称y是x的函数,其中:x是自变量,y是因变量 (1)在理解函数的意义时要抓住三点:有一个反映变化的过程有两个变量x和y变量x一旦变化,变量y都有唯一值与它对应 (2)在表示函数

2、时,如果要把y表示成x的函数,其实就是用含x的代数式表示y。3. 函数中自变量的取值范围及函数值 在一个变化过程中,自变量的取值通常有一定的范围,这个范围我们叫它为 自变量的取值范围确定自变量的取值范围通常要从两个方面考虑:使含自变 量的代数式有意义结合实际意义,使函数在实际情况下有意义【热身训练】1. 若一辆汽车以50千米/时的速度匀速行驶,则行驶的路程s(千米)与行驶的时间t(时)之间的函数关系式是       (   )  A. s5050t     

3、;   B. s50t      C. s5050t       D. 以上都不对2. 下列变量间的关系不是函数关系的是           (   )   A. 长方形的宽一定,其长与面积       B. 正方形的周长与面积   C. 圆的半径与

4、面积             D. 等腰三角形的底边长与面积3. 根据如图所示程序计算函数值,若输入的x的值为52,则输出的函数值为()A.32B.25C.425D.2544. 2008年5月12日,四川汶川发生8.0级大地震,我解放军某部火速向灾区推进,最初坐车以某一速度匀速前进,中途由于道路出现泥石流,被阻停下,耽误了一段时间,为了尽快赶到灾区救援,官兵们下车急行军匀速步行前往,下列是官兵们行进的距离(千米)与行进时间t(小时)的函数大致图像,你认为正确的是 

5、(   )5. 自由下落的物体的高度h(米)与下落的时间t(秒)的关系为h4.9t2. 现在有一铁球从离地面19.6米高的建筑物的顶部做自由下落运动,到达地面需要的时间是_秒. 6. 一个梯形的上底长为5,下底长为x,高为6,则梯形的面积y与下底长x之间的函数关系式是_,当下底x7时,梯形面积y_. 7. 一根弹簧原来长12cm,每挂1千克的物体就伸长0.5cm,已知弹簧所挂物体的质量不能超过20千克,求弹簧长度y(cm)与所挂物体质量x(千克)之间的函数关系式. 8. 如图所示,正方形ABCD的边长为5,P为BC上一动点,若CPx,ABP的面积为y,求出y与x之间的函数关

6、系式,并写出自变量x的取值范围. 【典型例题】【例1】 下列关于变量x、y的关系:3x-2y=5;y=|x|;2x-y2=10.其中表示y是x的函数关系的是( )A. B. C. D.【例2】 出租车收费按路程计算,3千米内(包括3千米)收费10元,超过3千米每增加1千米加收1.6元,则路程x3(千米)时,车费y(元)与x(千米)之间的函数关系式为_【例3】用总长为60m的篱笆围成矩形场地,矩形面积S(m2)与一边长l(m)之间的函数关系式为_,自变量l的取值范围是_【例4】下图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图像两地间的距离是80千米请你根据图像回答或解决下

7、面的问题:(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?【例5】某居民小区按分期付款的形式福利售房,政府给予一定的贴息小明购得一套现价为120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款5000元及上一年剩余款利息的和,若剩余欠款年率为0.4%;(1)第x年(x2)小明家交付房款y元,求年付款y(元)与x(年)的函数关系式;(2)将第三年、第十年应付房款填入下列表格:【独立尝试】1已知函数 ,其中相同的两个函数是( )A 与B 与C 与D 与 2有一内角为120°的平行四边形,它的周长为l,如

8、果它的一边为x,与它相邻的另一边长y与x之间的函数关系式及x的取值范围是( )AB C D 3函数 中自变量x的取值范围是_.4函数 的自变量x的取值范围是_.5函数 中自变量x的取值范围是_;函数 中自变量x的取值范围是_.614. 中自变量x的取值范围是_.7圆锥的体积为 ,则圆锥的高h(cm)与底面积 之间的函数关系是_.8将 改用x的代数式表示y的形式是_;其中x的取值范围_.9函数 中自变量x的取值范围是_.10物体从离A处20m的B处以6m/s的速度沿射线AB方向作匀速直线运动,t秒钟后物体离A处的距离为sm,则s与t之间的函数关系式是_,自变量t的取值范围是_.【拓展提升】1.

9、某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司中的一家签订月租车合同设汽车每月行驶xkm,应付给个体车主的月费用是元,应付给出租车公司的月费用是元,与x之间的函数关系图像如图所示(1)观察图像并根据图像选择较合算的车;(2)如果这个单位估计每月行驶路程为2700km,又如何选择?2. 某水果批发市场规定,批发水果不少于100千克时,批发价为每千克2.5元.小于携带现金3000元到市场采购苹果,并以批发价买进,如果购买的苹果为x千克,小王付款后的剩余现金为y元,则y与x之间的函数关系式是_,自变量x的取值范围是_.3. 用50牛的力推动一个物体,所做的功W(焦)与物体移动

10、距离S(米)之间的函数关系式是_,自变量S的取值范围是_.4已知 。 (1)用含 的代数式表示 ,并指出 的取值范围;(2)求当 时, 的值;当 时, 的值。5求下列函数自变量的取值范围(1) ; (2) ;(3) ; (4) .6在 中,已知 ,任取AB上一点M,作 ,设AM的长为x,平行四边形MPCQ的周长为y,求出y关于x的函数关系式和自变量的取值范围.【挑战探索】1. 如图,四幅图象分别表示变量之间的关系,请按图象的顺序,将下面的四种情境与之对应排序. 运动员推出去的铅球(铅球的高度与时间的关系)静止的小车从光滑的斜面滑下(小车的速度与时间的关系)一个弹簧由不挂重物到所挂重物的质量逐渐

11、增加(弹簧的长度与所挂重物的质量的关系)小明从A地到B地后,停留一段时间,然后按原速度原路返回(小明离A地的距离与时间的关系)正确的顺序是( )(A) (B) (C) (D)2. 已知函数,点P(x,y)在该函数的图象上.那么,点P(x,y)应在直角坐标平面的                  ( ) A. 第一象限        

12、60;       B. 第二象限          C. 第三象限                 D. 第四象限3如图,在矩形ABCD中,O是对角线AC的中点,动点P从点C出发,沿DC方向匀速运动到终点C已知P,Q两点同时出发,并同时到达终点,连接OP,OQ设运动时间为t,四边形OPCQ的面积为S,那么下列图象能大致刻画S与t之间的关系的是 A B C D7A4.(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论