




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二章 一元二次方程1、花边有多宽(1)整式方程及一元二次方程的概念整式方程:方程两边都是关于未知数的整式;一元二次方程:只含有一个未知数x的整式方程,并且都可以化作ax2+bx+c=0(a,b,c为常数,a0)的形式。1一元二次方程的意义未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式; 2只有当二次项系数时,整式方程才是一元二次方程。(2)一元二次方程的一般式及各系数含义一般式:ax2+bx+c=0(a,b,c为常数,a0),其中,a是二次项系数,b是一次项系数,c是常数项。2、配方法(1)直接开平方法的定义利用平方根的定义直接开平方求一元二次方程的解的方法叫直接开平方法。(
2、2)配方法的步骤和方法一、移项,把方程的常数项移到等号右边;二、配,方程两边都加上一次项系数的一半的平方,把原方程化为(x+m)2=n(n0)的形式;三、直接用开平方法求出它的解。3、公式法(1)求根公式 b2-4ac0时,x=(2)求一元二次方程的一般式及各系数的含义一、将方程化为一元二次方程的一般ax2+bx+c=0(a,b,c为常数,a0);二、计算b2-4ac的值,当b2-4ac0时,方程有实数根,否则方程无实数根;三、代入求根公式,求出方程的根;四、写出方程的两个根。4、分解因式法(1)分解因式的概念当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,根据a·
3、b=0,那么a=0或b=0,这种解一元二次方程的方法称为分解因式。(2)分解因式法解一元二次方程的一般步骤一、将方程右边化为零;二、将方程左边分解为两个一次因式的乘积;三、设每一个因式分别为0,得到两个一元二次方程;四、解这两个一元二次方程,它们的解就是原方程的解。5、为什么是0.618(1)什么叫黄金比线段AB上一点C分线段AB成两条线段AC,BC,若=,则C点叫线段AB的黄金分割点,其中叫黄金比,其值为0.618。(2)列一元二次方程解应用题的一般步骤一、审题;二、设求知数;三、列代数式;四、列方程;五、解方程;六、检验;七、答一、本章知识结构框图实际问题数学问题设未知数,列方程实际问题的
4、答案数学问题的解解 方 程降 次开平方法配方法公式法分解因式法检 验二、具体内容1、一元二次方程的一般式:,为二次项系数,为一次项系数,为常数项。2、一元二次方程的解法(1) 直接开平方法 (也可以使用因式分解法) 解为: 解为: 解为: 解为:(2) 因式分解法:提公因式分,平方公式,平方差,十字相乘法如: 此类方程适合用提供因此,而且其中一个根为0注意:提取整个因式的方法非常常见,解题的过程中一定要认真观察。十字相乘法非常实用,注意在解题的过程中多考虑。(3) 配方法二次项的系数为“1”的时候:直接将一次项的系数除于2进行配方,如下所示:示例:二次项的系数不为“1”的时候:先提取二次项的系
5、数,之后的方法同上:示例: 备注:实际在解方程的过程中,一般也只是针对且为偶数时,才使用配方法,否则可以考虑使用公式法来更加简单。(4)公式法:一元二次方程,用配方法将其变形为:当时,右端是正数因此,方程有两个不相等的实根: 当时,右端是零因此,方程有两个相等的实根: 当时,右端是负数因此,方程没有实根。注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。备注:公式法解方程的步骤:把方程化成一般形式:一元二次方程的一般式:,并确定出、求出,并判断方程解的情况。代公式:(要注意符号)备注:一元二次方程的解题步骤:首先看方程中是否可以同时除以或者乘以一个非零的
6、数,使得方程更加方便计算:如:(同除于10)这样更加方便计算。(同乘于,这样二次项的系数为正整数,更方便计算)四种求方程方法的一定要合理选用,依次按直接开平方、因式分解,配方法和公式法的顺序考虑选用。可以考虑选用根及系数的关系对方程的根进行适当的检验,同时对于应用题中,一定要考虑根的实际意义,是否所有的根都是方程的解。3、根的判别式1了解一元二次方程根的判别式概念,能用判别式判定根的情况,并会用判别式求一元二次方程中符合题意的参数取值范围。(1)=(2)根的判别式定理及其逆定理:对于一元二次方程()当方程有实数根;(当方程有两个不相等的实数根;当方程有两个相等的实数根;)当方程无实数根; 从左
7、到右为根的判别式定理;从右到左为根的判别式逆定理。2常见的问题类型(1)利用根的判别式定理,不解方程,判别一元二次方程根的情况(2)已知方程中根的情况,如何由根的判别式的逆定理确定参数的取值范围(3)应用判别式,证明一元二次方程根的情况例:求证:方程无实数根。4、一元二次方程的根及系数的关系法1:一元二次方程的两个根为:所以:,定理:如果一元二次方程定的两个根为,那么:法2:如果一元二次方程定的两个根为;那么 两边同时除于,展开后可得:法3:如果一元二次方程定的两个根为;那么得:(余下略)常用变形: 等练习:【练习1】若是方程的两个根,试求下列各式的值:(1) ;(2) ;(3) ;(4) 【
8、练习2】已知关于的方程,根据下列条件,分别求出的值(1) 方程两实根的积为5;(2) 方程的两实根满足【练习3】已知是一元二次方程的两个实数根(1) 是否存在实数,使成立?若存在,求出的值;若不存在,请您说明理由(2) 求使的值为整数的实数的整数值5、韦达定理相关知识(1)若一元二次方程有两个实数根,那么,。我们把这两个结论称为一元二次方程根及系数的关系,简称韦达定理。(2)如果一元二次方程的两个根是,则,。(3)以为根的一元二次方程(二次项系数为1)是(4)在一元二次方程中,有一根为0,则;有一根为1,则;有一根为,则;若两根互为倒数,则;若两根互为相反数,则。(5)二次三项式的因式分解(公式法) 在分解二次三项式的因式时,如果可用公式求出方程的两个根,那么如果方程无根,则此二次三项式不能分解。6、一类特殊的二元一次方程的求解方法再探讨的两个根为,那么:(1)的两个根为:,(原因留给大家自行思考)例1:先求出方程:的两根为: ,故原方程的根为:(2)的两个根为:,例2:先解得方程:的两根为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB 38230-2025坠落防护缓降装置
- 2025湖南资兴市面向本市农村订单定向医学生、基层医疗卫生机构本土化专科层次人才培养医学生考核招聘15人考前自测高频考点模拟试题附答案详解
- 2025湖南益阳农商银行招聘综合柜员岗9人模拟试卷参考答案详解
- 2025昌吉州融媒体中心引进急需紧缺人才(1人)考前自测高频考点模拟试题及答案详解(新)
- 2025年河北北方学院附属第二医院选聘工作人员6名模拟试卷附答案详解(典型题)
- 2025江苏盐城市妇幼保健院招聘编外专业技术人员16人模拟试卷及完整答案详解1套
- 2025年洛阳洛宁县招聘看护队伍劳务派遣工作人员45人考前自测高频考点模拟试题带答案详解
- 2025年中国即时照相机和附件行业市场分析及投资价值评估前景预测报告
- 2025年中国活性橙122行业市场分析及投资价值评估前景预测报告
- 2025安徽阜阳市颍上县人民医院引进博士研究生2人考前自测高频考点模拟试题及答案详解(全优)
- 2025届春季厦门银行校园招聘考前自测高频考点模拟试题附答案详解(考试直接用)
- 江苏省宿迁市沭阳县第一次城乡联考2026届九年级上学期9月月考语文试卷(含答案)
- 无人机培训课件范本图片
- 2025年安全员考试题库(附参考答案)
- 颅脑外伤创伤课件
- 车间落地品管理办法
- 兄妹断绝协议书
- 2025广西公需科目培训考试答案(90分)一区两地一园一通道建设人工智能时代的机遇与挑战
- 生活委员课件
- 国家开放大学《人文英语4 》期末机考题库
- 民事赔偿赔协议书
评论
0/150
提交评论