




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.一元二次方程的定义(重点) ,要求: (1)会判断某个方程是否为一元二次方程 ; (2)一元二次方程的一般形式为: 0,02acbxax会确定方程的各项系数; (3)会将一个一元二次方程化为一般形式,并指出各项系数; (4)会求某个一元二次方程成立的条件; (5)知道方程的一个根, 会求方程中相关字母的值 . 2.解一元二次方程的方法共有四种方法 : (1)直接开平方法 ; (2)因式分解法 ; (3)配方法 ;(4)公式法 .3.直接开平方法适用于解形如bamxbx22,的方程,如果0b,就可以利用直接开平方法来解 . 4.因式分解法适用于将方程化为一般形式后左边能进行因式分解的方程,具
2、体方法是: (1)将方程化为一般形式; (2)将方程的左边分解为两个一次因式的乘积 ; (3)令每一个因式等于0,就得到两个一元一次方程 ; (4)解两个一元一次方程, 它们的解就是原方程的解 . 5.配方法本方法需要与直接开平方法共同求解,具体方法是 : (1)将方程化为一般形式; (2)方程两边同时除以二次项系数,把二次项系数化为1; (3)移项 :把常数项移到方程的右边; (4)配方 :在方程两边各加上一次项系数一半的平方,使左边成为完全平方式 . (5)求解 :如果方程的右边整理后是非负数,就可以用直接开平方法求解,若右边是负数, 则表示原方程无解. 注意 :使用本方法一定要将方程的二
3、次项系数化为 1. 举例:二次项系数化为“1”后,直接进行配方,如下.422202222222qppxpqppxxqpxxqpxx6.公式法使用本方法时要将方程化为一般形式,确定各项系数.具体方法是 : (1)一化:将方程化为一般形式; (2)二 定 : 确 定cba,的 值 及acb42的值 ; (3)三判:根据判断方程是否有解若acb420,则方程有两个实数解 ; 若acb420,则方程无解 . (4)四代:将各项系数代入求根公式,求根公式为aacbbx242. 7.另一种方法 :换元法本方法常常用来求解高次方程,通过换元来达到求解的目的.此类题目如 : 例1. 解方程0624xx分析 本
4、题可设2xm,从而原方程转化为关于m的一元二次方程062mm,通过求解m来达到求解x的目的 . 例2. 解方程1222xxxx分析本题可设.2xxm从而原方程转化为012mm. 8.根的判别式acb42判别式acb42的符号与一元二次方程的解有关 :当acb420 时,方程有两个实数根; 当acb420 时,方程无解(即无实数根). (1)当acb420 时,方程有两个不相等的实数根;(2)当acb42=0 时,方程有两个相等的实数根.9.韦达定理韦达定理反映了一元二次方程的根与系数之间的关系 . 若一元二次方程)0(02acbxax的两根分别为21,xx,则有(1)abxx21;(2)acx
5、x21. 10.典型例题例1. 已知12132222baba,求22ba的值 . 分析这里可设m22ba,原方程化为1213 mm,展开整理得01522mm. 例2.先用配方法说明 :不论x取何值,代数式1062xx的值总大于0,再求出当x取何值时,此代数式的值最小,最小值为多少? 分析代数式1062xx配方后为 : 132x, 032x, 132x0,即代数式的值大于0. 例3.已知关于x的方程03422qxx的一个根是21,求它的另一个根及q的值 . 分析知道方程的一个根求另一个根,使用韦达定理,这里可设另一个根为m,根据韦达定理则有23212421qmm,即可求出m和q的值 . 例4.
6、学校计划用地面砖铺设教学楼前矩形广场的地面abcd ,已知广场的长为100m,宽为 80m,图案设计如下图所示:广场的四个角为正方形,阴影部分为四个矩形,阴影部分铺绿色地面砖,其余部分铺白色地面砖. (1) 要使铺白色地面砖的面积为5200 平方米,那么小正方形的边长为多少米?(2) 如果铺白色地面砖的费用为30 元每平方米,铺绿色地面砖的费用为20 元每平方米,当小正方形的边长为多少时,铺广场地面的总费用最少?最少费用是多少?dabc例 5.已知21,xx是一元二次方程1222xx03m的两个实数根,且21,xx满足不等式022121xxxx,求实数m的取值范围 . 11.平均增长率问题平均增长率公式 :nxab1, 其中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文化遗产数字化保护2025年技术应用在文化遗产监测预警中的应用报告
- 金融科技在2025年助力普惠金融业务拓展与市场竞争力提升报告
- 美妆行业个性化定制服务模式下的美妆产品个性化定制服务市场竞争力分析报告
- 城市污水处理厂智能化升级改造与城市水环境治理报告
- 教育行业市场分析报告:2025年职业教育培训市场发展趋势研究
- 教育精准扶贫项目实施中的农村教育改革与发展报告
- 福州第一中学重点名校2024届中考冲刺卷数学试题含解析
- 工业互联网平台IPv6技术升级在智能工厂设备能效管理中的应用报告
- 电气工段工作总结模版
- 小学二级语文教学工作总结模版
- 中国南水北调集团新能源投资有限公司招聘笔试题库2024
- (六枝)电厂贮灰场工程施工组织设计
- 铁路货运大数据分析应用
- 工程项目成本管理的案例分析
- 3.2工业区位因素及其变化以大疆无人机为例课件高一地理人教版
- 2024年陕西省中考数学试卷(A卷)附答案
- DL-T5190.1-2022电力建设施工技术规范第1部分:土建结构工程
- 财务预算分析表模板
- 中国高清荧光腹腔镜行业市场现状分析及竞争格局与投资发展研究报告2024-2034版
- 2024年高考体育单招考试政治重点知识点归纳总结(复习必背)
- MOOC 大数据技术原理与应用-厦门大学 中国大学慕课答案
评论
0/150
提交评论